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Abstract

A mode for plasmatransport near marginal stability is presented. The model is based
on subcritical resistive pressure-gradient-driven turbulence. Three-dimensional nonlinear
calculations based on this model show effective transport for subcritical mean profiles.
This model exhibits some of the characteristic properties of self-organized criticality.
Perturbative transport techniques are used to elucidate the transport properties. Propagation
of positive and negative pulses is studied. The observed results suggest a possible
explanation of the apparent nonlocal effects observed with perturbative experiments in
tokamaks.
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INTRODUCTION

Many systems in nature are self-similar over extended ranges of spatial and temporal
scales. Inthose systems, scale spectramay be described by power laws, and time spectra
resemble the 1/f-like distributions. Bak, Tang, and Wiesenfeld! suggested that there may
be an intimate connection between the scale invariance in space and time, as is the case at
critical transitions. Because there is no externally controlled critical parameter in natural
systems, they call this basic property self-organized criticality (SOC). A running sand pile
has been used as a simple dynamic system that exhibits these genera properties.2=4 Many
models of natural phenomena like earthquakes,® forest fires, and coevolution of biological
species satisfy the basic hypothesis of SOC.

Here, we are interested in the particular case of the transport processes in magnetically
confined plasmas. These processes seem to have some of the characteristic properties of
SOC systems. For instance:

1) Sincethe proposal of the profile consistency principle,8 the resilience of plasma profiles
has been adopted in many transport modelsin a variety of formulations. This concept
suggests that the existence of acritical gradient, or a gradient scale length, plays an
important role in confinement.

2) Inthe low-confinement (L-mode) regime, the energy-confinement time scales with the
minor radius of the device. That is, transport scaling is Bohm-like.® However, the
core fluctuation correlation length is of the order of afew ion Larmor radii.l® These
experimental results suggest the importance of interaction of disparate length scalesin
L-mode transport.

3) The broad-band fluctuation spectrum in Ohmic and L-mode discharges has a frequency
dependence that is not very sensitive to changes in global parameters. The spectral
decay is often close to 1/f.11

4) A common result of stability analysisisthat experimentally measured plasma profiles
are found to be close to marginal ballooning stability.12 This finding led to L-mode
transport models based on marginal stability to ideal ballooning modes.13

Because of these properties, SOC has been proposed as a paradigm for understanding

plasma profile dynamics.14.15 Up to now, the paradigm used for the tokamak transport

application of the SOC concept has been based on the sand pile analog. For numerical

calculations?® a cdlular automaton has been used, and for the andytica studies, a

nonlinear Burgers equationl4 has been examined. It should also be noted that the situation

studied hereis closer to a hydrodynamic SOC with overlapping avalanches than to a SOC



with vanishing weak drive. Near the threshold of avalanche overlap, the SOC dynamics
closely resemble those of a percolation cluster dightly above criticality. Hence,
hydrodynamic models, which are motivated by analogy to fully developed turbulence, are
not applicable to the near threshold of avalanche overlap.

Here, we develop a model that contains some of the basic properties of plasma
turbulence without bringing in all the complex details of the toroidal confinement device.
This approach will allow usto explore theinterplay of fluctuations and transport in asimple
model realization of a plasmanear marginal stability. Thismodel isfound to have some of
the characteristic properties of a SOC system. In the numerical calculation presented, we
have reduced the separation of time scales characteristic of a physical experiment that makes
numerical calculationsinvolving both fluctuations and transport time scales prohibitive.

The basic turbulence model is introduced in Sect. |1, with the relaxation to a
submarginal steady state discussed in Sect. I1l. The dynamical evolution of the model
leading to subcritical transport is discussed in Sect. V. The transport properties of the
model are further explored by perturbative transport studies in Sect. V. These studies
suggest a possible scenario to explain some of the anomal ous observations when cold pulse
perturbations are triggered at the tokamak edge. In Sect. VI, genera ideas to
experimentally test models based on the SOC concept are put forward, and finaly, in
Sect. VI, the conclusions of the paper are presented.

II. TURBULENCE MODEL

We start with acylindrical plasma confined by a magnetic field with average bad curvature.
This plasma can be unstabl e to resistive interchange modes. The dissipative terms control
the instability threshold. A typical example of thistype of plasmais the outer region of
sheared stellarator devices. In the past, the resistive pressure-gradient-driven turbulence
has been used to describe these plasmas in a supercritical state.16 Now we use the same
basic model to study a subcritical state. In this model, the fluctuation equations are the
same as those discussed in Ref. 16:
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Here, p and F are the pressure and electrostatic potential, the tildes indicate fluctuating
quantities (in time and space), and the angular brackets, { ), indicate flux surface
averaging, that is the poloidal and toroidal angular average. Thetoroidal magnetic field is
B,, theion massis m;, the averaged radius of curvature of the magnetic field linesisr,, and
theresistivity is h. Thetotal flow velocity is expressed in terms of an averaged poloidal
velocity plus afluctuating component given in terms of a stream function IE/ B, .
V={v,aq+NF " 2/8,, €)

q

where (V) isthe poloidal flow velocity, which isafunction only of tand r, and El and Z
are unit vectorsin the poloidal and toroidal directions, respectively. The velocity stream
function F / B, istrivially related to the electrostatic potential —F . In both Egs. (1) and (2),
there is adisspative term with the characteristic coefficients m(the collisional viscosity) and
c~ (the collisional cross-field transport), respectively. A paralel dissipation termisalso
included in the pressure equation. Thisterm can be interpreted as the parale thermal
diffusivity.

Theinstability drive is the flux surface averaged pressure gradient, T{p}/{r , which is
afunction of rand t. A main difference between the model in Ref. 16 and the one
considered hereisin the evolution of the flux surface averaged quantities. The evolution
equation of the flux surface averaged pressureis
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It contains atime independent source term, S;, which is only afunction of r. This source
of particles and heat is due, for instance, to neutral beam heating and fueling. In this case,
S, isessentially determined by the beam deposition profile. Even the best beams have time
and radial variations in the amount of heat deposited, thisis represented by an added noise
term, S;, which we choose to be random in radius and time. Implicitly, S; reflects
variations on time scales slower than fluctuation time scales, hence its poloidal isotropy.
The surface averaged quantities are not static, but vary on time scales long compared to the
fluctuations. We will discuss below the sources of noise in this system and their
meanings. The collisional diffusion coefficient, D, is taken to be different from the one in
the fluctuation equation, Eqg. (2).



We assume that away from marginal stability there is asteady state solution, pe,(r), for
which the source term is identicaly cancelled by the radiad diffusion. The evolution
equation of the averaged pressureis
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The main transport mechanism that we study is the turbulent transport through the
second term in the left-hand-side of Eq. (5). However, the collisional diffusion term on
the right-hand-side is not is negligibly small for the calculations presented in this paper.

The coupling of the fluctuations to the averaged radia eectric field is taken into
account only through the poloidal velocity contribution. The time evolution of the latter is
given by
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Here, m isthe flow damping caused by the magnetic pumping. The nonlinear convection
terms in the poloidal momentum balance generate the nondiagonal rq terms of the Reynolds
stress tensor, which can be interpreted as a turbulent vorticity flux.
To reach to a self-organized state (when such a state exists), it is very important for noise to
exist in the system. In some simple dynamical models, like the sand pile, the noiseis
external noise and the SOC state is reached by taking the limit of small noise. Therefore, it
is difficult to prove the existence of such SOC states in problems that are solved
numerically. Itiseven more difficult in acomplex problem like the one presented here. In
the model presented here, there are three types of noise:

1) To start the three-dimensional nonlinear calculations, a low level of background
fluctuations are initialized. These are the seeds for the instabilities to grow. We chose
arandom distribution of amplitudes and phases with an averaged fluctuation level
below 10-5. In our experience, for fluctuation levels this low, the results in the
nonlinear regime are not sensitive to these initial conditions, although this is very
difficult to prove without a study of many realizations. Systematic studies of the initial
conditions for these equations have only been done for two-dimensional turbulence.1”

2) There is the noise associated with the fluctuations as the resistive interchange at
different radial positions become unstable. The fluctuations evolution is given by
Egs. (1) and (2), and they induce transport of the averaged pressure and flow through



the nonlinear fluxesin Egs. (5) and (6) and generate flow through the Reynolds stress
termin Eq. (6).

3) Thethird source of noiseisthe external pressure sourcein Eg. (5). Since this model
has intrinsic noise because of the fluctuations, the external noise is not necessarily
needed to reach an SOC state. A continuum source could lead to essentially the same
results. There are several reasons to introduce a noise source. First, it isuseful in
comparing with the sand pile analog of the transport. A second reason isthat the noise
source allows one to separate the transport events and visualize the different scale
length of these events. As the noise becomes more continuous, the transport events
overlap and it is difficult to characterize them. In practice, all thermal and particle
sources are noisy, therefore, such source terms are not unrealistic.”

Numerical calculations show that the time averaged steady-state profile is essentially the
same with or without the externa noise source. Therefore, for the dynamica model
including fluctuations to be close to an SOC state, such a source is not required. Tests of
the results for different types of sources have been done. The tests are limited to afew
cases due to the expense of these calculations. The results are not sensitive, asis shown
below.

[1l. EQUILIBRIUM SOLUTION NEAR MARGINAL STABILITY

To investigate the transport dynamics close to marginal stability, the model must have a
critical pressure gradient below which resistive interchange modes are stable. This is
achieved by having finite values of the dissipative termsin the fluctuation equations. Here,
wetakem= 0.2 &/trandc. = 0.05 &/tg, wheretz © &m/h istheresistivetimeand a
isthe minor radius. The parallel thermal diffusivity is ¢, = 10° R2/tg. Theresistivity is
such that the Lundquist number isS = 105 for all these calculations and b, [ 2e” = 0.018.

First, we consider the evolution of the system without average poloidal velocity. This
constitutes the simplest form of the model. We start with a pressure profile well above the
critical profile. To avoid problems with the boundaries, only modes with resonant surfaces
in the range 0.2 > r/a> 0.8 have been included in the calculation. We include 220
Fourier components for the cal culations without flow and 440 for those with flow. The
radial grid resolutionis Dr = 7.5~ 104 a The number of modes included in these
calculations is low compared with the number we have included in studies of developed
supercritical turbulence. However, in this model, transport is dominated by the profile
relaxation processes. Therefore, we do not expect that a broad spectrum of modes is



needed on each flux surface. The nonlinear evolution has been carried out with the KITE28
code.

The system has been allowed to evolve to a stable state. The source term has been set to
zero in the pressure equation to alow the relaxation to a stable state. To reach a SOC state,
a very low value of the average pressure diffusivity is required. Otherwise, a slow
diffusion of the averaged pressure smoothes the nonlinear modification of the average
profile and sustains the instability. This effect is illustrated in Fig. 1, where the time
evolution of the electrostatic potential fluctuation is plotted versus the time for different
values of D,. For D, =0, the fluctuations decay with a decay rate comparable to the
instability growth rate. To have a proper representation of this time scale, we need
D, < 0.001 &/tr. Inpractice, for afull three-dimensional nonlinear calculation, it is not
possible to have D, = 0, for numerical reasons. Therefore, we have used D, = 0.0001
&/trin all the caculations presented here.

When all perturbations have decayed and the pressure profile has relaxed (Fig. 2), the
systemisin asteady state. We will see that this state has the typical properties of the SOC
state. First, note that this system is not marginally stable; it is more stable than marginal.
Thisfact is clear from the nonlinear evolution of asingle helicity. InFig. 1, we have
plotted the time evolution of the rms potential fluctuation level for different values of D,.
The linear growth rate is unaffected by D,; hence, all m's grow at the same rate. At about
t =0.00& , the evolution enters the nonlinear phase and the instability saturates. At the
same time, the nonlinear modification of the pressure profile reduces the instability drive.
For D, = 0, the fluctuation level decays very fast after reaching the nonlinear state. In this
case, the pressure gradient in the nonlinear state is well below the critical gradient, and the
mode is stabilized. Therefore, the nonlinear evolution has led the profile not to the
marginal stable point, but rather well below. Indeed, the local gradient dynamics exhibit a
sort of inertiawhich resultsin evolving past marginality to stability. Aswe increase D,, the
increased collisiona diffusion smoothes the pressure profile, and the change in the gradient
can lead to sustainment of the instability. These effects can be further studied by evaluating
the linear stability of the final profile after nonlinear evolution. Inthe case of D, = 0, the
stability calculation gives significantly negative growth rates. The fact that the resulting
profile is more stable than marginal is a characteristic property of the SOC state, 1> although
we cannot prove by just this observation alone that this stateis a SOC state.

If we allow the poloidal velocity to evolve and the flow damping rate is low enough,
there isamodification of the velocity profile induced by the Reynolds stressterm. We can
now repeat the relaxation process just described. In this case, the pressure profile after
relaxation is different from the case without flow. The reason is the stabilizing effect of the



poloidal velocity shear that changes the linear stability threshold and, as a consequence,
changes the critical gradient. Therefore, the fina pressure profile will depend on the
averaged level of the poloidal velocity. Sincethislevel isafunction of the turbulence and
closely related to it, the calculation including poloidal flow can not be broken into two
steps. A full nonlinear calculation with sourcesis required each time.

V. TRANSPORT PHENOMENA IN STEADY STATE

The next step in the development of the transport model is to consider the time
evolution of the steady state with a noise source added. Here the assumptionisthat, ina
time-averaged sense, the equilibrium pressure source maintains the averaged gradient.
However, this sourceis, in general, noisy. Thisnoiseis responsible for the dynamicsin
steady state. The noise is taken into account in the calculation as follows. At afixed
number of time steps (typicaly between 100 and 400), a small averaged pressure
perturbation is added with a 50% probability. This perturbation isradialy localized. It has
a Gaussian form with awidth of W = 0.01 &g the amplitude is 0.05 times the local value
of the normalized (to its r = 0 value) equilibrium pressure. Theradial location of the
averaged pressure perturbation is randomly chosen intherange 0.2 >r/fa > 0.5. The
initial state is the stable relaxed pressure profilein Fig. 2. A very low random level of
non-axisymmetric perturbationsis aso initialized (about 0.001% fluctuations) as a seed for
the instabilities. We consider first the case without averaged poloidal velocity.

Asthe average pressure perturbations are added, they trigger local instabilities in the
plasma at the corresponding resonance surface. Theinstability locally flattens the pressure
profile and causes a change of gradient in the nearby surfaces, which may become unstable
and so continuing the process. Eventually, the excess pressure deposited at the core is
transported to the edge of the plasma. This process has the characteristic properties of an
avalanchel It isatrue avalanche in the sense that there is propagation both up and down
the gradient. The downward propagation is dominant.

To quantify the global transport process, we evauate the time evolution of the
following quantities:
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Here, {p) isthe pressure profile obtained in the previous section by relaxing the initial
pressure profile to steady state. In Fig. 3, we plotted Ny e, Ntoa, @0 DN = Nryoa - Negre-



We can see that after atrangition time, the system reaches a steady state in which N, stays
constant intime. That is, there is no accumulation of pressure at the core, and all added
pressure is transported out. There is some accumulation in the outer region, r/a> 0.5,
because of the boundary conditions. That is the reason to look at the r/a= 0.5 surface.
The effective flux through the r/a= 0.5 surface is equal to the rate of change of DN.
Therefore, an incremental effective diffusivity can be defined by
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Using the same dataas in Fig. 3, we have plotted the effective diffusivity as a function of
timein Fig. 4. Thisincremental effective diffusivity makes sense only as atime-averaged
guantity. Note that the theoretical calculations produce aresult only in the Markovian limit.
Over the time range considered, its averaged valueis Dy = 0.076 &/t ;. Thisvalueis more
than two orders of magnitude above D,. Therefore, asistypical in SOC systems, thereis
effective trangport in subcritical conditions. Note that this diffusion is only the incremental
diffusion associated with the noise source. It is not the total diffusion needed in
maintaining the equilibrium. This transport coefficient is afunction of the “noise level.”
That is, transport regulates itself to remove the needed amount of pressure. To find the
scaling with noise level is difficult because it takes along time to perform these nonlinear
calculations over the time scales required. We investigate the scaling by the use of pressure
pulses.

The transport process has length scales that range from the individual single-mode
width, Wy, to the full plasmaminor radius. This can be seen in Fig. 5(a), where we have
plotted incremental averaged pressure, {p) - {p)_, contours as a function of the radial
position and time (r-t plane). It is easy to identify individual transport events (avalanches)
triggered by the pressure drops. These avalanches involve the destabilization of several
instabilities at different resonant surfaces. Each avalanche can be characterized by alength
[see green contoursin Fig. 5(a)]. Thetrajectories of the transport eventsin the r-t plane
clearly show that the propagation is not ballistic; it has an essentialy diffusive character. In
Fig. 5(b), we have plotted the rmslevel of fluctuation in the samer-t plane. It isclear from
this plot that the dominant scale length of the fluctuations is of the order of the mode width
W,. Thisisanother property of thistype of model: the radial correlation length of the flux
is much longer than the fluctuation radial scale. Similarly, in the sand pile model, the
fluctuation scale is identified with the basic cell size while the avalanches can reach the
whole system size.1>



Let us find the impact of these mixed scale lengths on the diffusion coefficient. We
can calculate the time averaged flux and the averaged pressure profile in the steady state
phase of the calculation (Fig. 6). It isinteresting to notice that the averaged flux increases
approximately linearly with radius, asin the case of the running sand pile.1> The pressure
profile shows all the structures of the order of a mode width. To calculate a diffusion
coefficient, we fit both by alinear function of r and that givesus Dy » 0.33 (r-ry). In spite
of the apparent diffusive character of the single transport event, the averaged diffusion
coefficient has aradial scale dependence which is consistent with Bohm-type scaling. This
result is in good agreement with the numerical sand pile results!® and with the analytical
caculations.14

Thereis aso abroad range of time scales involved in the transport process. The best
way to find the relevant time scalesis to Fourier-analyze the local fluctuations. We analyze
the time trace of the electrostatic potential fluctuations at a fixed spatial location. Because
the diamagnetic rotation terms have not been included in this calculation, the fast oscillatory
time scale is not present. Therefore, this time trace is equivalent to the envelope of the
fluctuations trace. The analysis of these data leads to the results plotted in Fig. 7. The
fluctuation spectrum has three characteristic regions. In the very low frequency region, the
spectrum is flat. For frequencies in the range 5~ 104 ty,y1 < f < 102 ty, %, the
dependence of the spectrum on f is close to 1/f. At higher frequencies, the spectrum falls
off as f-4. These three spectral regions have been identified in the sand pile model4 and
they are characteristic of many SOC systems.

To test theresiliance of these results to the form of the externa noise, we have
repeated the cal culation with the same form of the noise source but decreased the size of the
pressure perturbations by afactor of 4 and increased their frequency by the same factor. In
this way, the time integrated pressure source is the same. The result for the diffusivity
does not change. The transport events have stronger overlap due to the increased
frequency, but the average transport properties do not change.

The addition of poloidal flow makes this calculation considerably more complex as
thereisinterplay between the shear flow and turbulence.l® The shear flow is amplified by
turbulence, and at the same time the shear flow regulates the turbulence level and the
transport scales. Thisinterplay isvery important in the case of the pulse propagation
discussed in the next section. Here, we want to emphasize a double role played by the
shear flow. First, it changes the critical gradient, as has been discussed in the previous
section. The second effect is the decorrelation of the turbulence and of the transport events.
This second effect was studied in the sand pile model and with the Burgers equation, with
the result of the modification of the basic scaling of the effective diffusivity. Because of the
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number of nonlinear calculations required to test this scaling, this study is beyond the scope
of the present work.

V. PULSE PROPAGATION STUDIES.

Using the model developed in the previous sections, we have studied the propagation of
pressure pulses in the plasma. Two types of pulses have been considered: positive
pressure perturbations at the plasma center and negative pressure perturbations at the
plasma edge.

Let usfirst consider a positive pressure pulse produced at the center of the plasma. An
averaged pressure perturbationis produced at ro= 0.2 a. We use a Gaussian form with a
width of 0.02 a. For different values of the amplitude of the pulse, we follow its time
evolution. In Fig. 8, we have plotted the contours of the averaged pressure perturbation in
the t-r plane, aswasdonein Fig. 5(a). The pulse propagation isvery similar to the one
for asingle transport event plotted in Fig. 5. The time evolution of the averaged pressure
pulseis shown in Fig. 9. The change of the waveforms with time is quite different from
the results of simple diffusion, although the determination of the time scales will indicate
diffusive propagation. To interpret in a quantitative way the evolution of the pulse, we use
the same method that the experimentalists use for heat pulse propagation.20 By evaluating
thetime delay, D, for the peak of the pulse to reach agiven radia position r, we can plot Dt
versus (r-rg)2. From this plot (Fig. 10), we see that the propagation is consistent with
diffusive propagation, and we can derive an effective diffusivity. The calculated effective
diffusivity isafunction of the size of the pulse. Using different size pulses, we conclude
that the dependence of the effective diffusivity with the amplitude of the pulse, P, is

D, M P*®. Thisresult is consistent with the analytical determination of the diffusivity
based on the nonlinear Burgers equation.14 However, this result also cautions us about
identifying a process with diffusion on the basis of the analysis of Fig. 10.

If anegative pressure pulse is generated at the plasma edge, the propagation dynamics
are quite different from the internal positive pulse. A typical example of negative pulse
propagation isshown as a t-r plot in Fig. 11. The perturbation is produced at r, = 0.6 a
with awidth of 0.02 a. We can see that the leading edge of the pulse does not curve as it
moves inward, as would be expected if diffusion were the dominant process. The leading
edge of the pulse moves inward at constant velocity (Fig. 12). The propagation isfast,
Vouse =834 3/t . The propagation of the negative pulse has some of the characteristic

properties of a propagating front2! for fast transitions. One of them is the large leading-
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edge velocity. In the cases considered here, the propagation velocity is approximately
givenby V_,.. » OV, where gisthe supercritical instability growth rate due to the increase

pulse
of the local gradient by the pulse and W a characteristic scale length of the instability.
Without coupling to the averaged flow shear, the averaged negative pressure pulse
propagates all the way through the plasma core.

When the self-consistent flow is coupled to the pulse evolution equation, shear flow is
amplified. The level of shear flow depends on the turbulence level generated by the pulse
and on the seed flow level. Because the latter is arbitrarily set, no definitive conclusion can
be derived from this model. However, when the seed flow profile is above athreshold
value, the generated shear flow can control the scale length in the problem. That is, the
pulse does not penetrate all the way to the center of the plasma (Fig. 13). In Fig. 13, we
plot the propagation of a negative pulse with parameters identical to those for the case of
Fig. 11, but with averaged flow evolution and the noise source turned on. The
propagation of the negative pressure pulse stops at r/a @ 0.37. At this point a transport
barrier isformed, and confinement improves withinr/a £ 0.37. Thereis clear evidence of
this effect because we have the noise source turned on and we can see pressure
accumulation within thisregion (Fig. 14). Thisresult is consistent with the transport
bifurcation results from the analytical predictions!4 for SOC scaling with sheared flows.

The dependence of the resulting shear flow on the seed flow is one of the limitations of
this moddl. The sheared electric field isthe real parameter to include in this model to control
the scale length of the propagation. This should incorporate the contribution of the gradient
of theion pressure. In this case, because we work with a finite pressure gradient, thereis
no ambiguous dependence on the seed for the electric field shear.
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VI. EXPERIMENTAL TEST OF THE SOC MODELS

There are some general ideas in the SOC model for confinement that go beyond the
limitations of the present model and could be experimentally tested. One of them is the
concept of transport event, or avalanche-like transport. The transport events are not
continuous but intermittent. This fact by itself isnot a clear test of the model because the
fluxesinduced by supercritica turbulence also have intermittent character?2 What is
particular to SOC models is the difference between the characteristic scale lengths of the
fluctuations and transport events. The high frequency range of the fluctuation spectrum
decorrelates over the scale length of a mode width. However, the transport scale and the
low modulation frequency of the fluctuation maintain a correlation over several mode
widths. Furthermore, because transport events are avalanches, the coherence of the cross-
correlation of the low frequency modulation at two radial positions peaks at atime delay
corresponding to the propagation distance of the avalanche, Dt © (r - ro)2 / Dy . Thiseffect
is shown in Fig. 15 for the caculation corresponding to Fig. 5. This long-range
correlation with propagation of the very low frequencies offers a significant experimental
test of the SOC transport mechanism. When an avaanche starts, there is a double
propagation effect that can be interpreted as a bump moving down and a hole moving up
the profile. The cross-correlation function has two maxima, one at positive Dt and another
a negative Dt (Fig. 16).

A second property is the dependence of the diffusivity on the size of the pulse. This
dependence is weak; it is afractional power of the amplitude of the pulse. To test this
effect, it is necessary to consider that small pulses will be below the threshold because of
the background transport level. For large pulses, the effect of the radial electric field shear
tends to weaken the dependence on the pulse amplitude. Therefore, it isdifficult to define
the range of pulse amplitudes where this dependence can be tested.14

The spectral decay index of the fluctuations has arather universal value. Thisisathird
property of these SOC models that could be explored experimentally. We do not have
systematic information on the gross features of the fluctuation spectra in magneticaly
confined plasmas. A superficial look at published spectra suggests some kind of universal
indexes for the broad band spectra. However, a systematic study iscalled for.

A fourth property that has experimental implications is the propagation of negative
pressure pulses. In our simple model, thisis the analog of the cold pulse propagation
studied in different machines.23.24  For several years, these experiments have been a
serious puzzle. The propagation studies of the previous section suggest a possible scenario
to explain these experiments. The cold pulses are created at the plasma edge; they
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propagate inward by triggering a sequence of local instabilities. The propagation is fast,
and the leading edge of the pulse propagates with a constant velocity. With the triggering
of the local instabilities, the sheared electric field, E(, isamplified. When E(islarge
enough, it stops the inward propagation of the cold pulse. At the sametime, the E( acts as
atransport barrier, and the central plasmais better confined. The improved confinement
leads to heating of the core. The experimental identification of atransport barrier associated
with the propagation of these pulses could be a good test of this mode.

VII. CONCLUSIONS

The model proposed in this paper has many of the characteristics of a SOC model,
although it is not possible to rigurously prove that it isa SOC model. Thisis, of course,
partially a consequence of the ambiguity which persists in the definition of SOC. This
model isavery simplified form of turbulence for a magnetic confinement device, but it
gives the main features of what can be expected if confinement is SOC. The transport
properties put forward on the basis of a simple sand pile model1> are well verified in this
model that includes both fluctuations and transport. Thisis an indication that the main
properties derived here do not depend on the particular underlying linear stability
mechanism.

The time evolution of positive outward-propagating pulses can be described by a
diffusive process, although the propagation is not pure diffusion. The effective diffusivity
derived from the numerical calculations scales as afractional power (approximately square
root) of the amplitude of the pulse.

Inward-propagating negative pul ses behave in amore complex way. The leading edge
moves ballistically. With the propagating pulse there is E¢ amplification. The propagation
depth of acold pulse depends on the level of E(. The E¢amplification by the pulse results
in the formation of an internal transport barrier that causes the confinement improvement at
the core. Thebarrier diffusively decays afterwards.

Many of the general features of the SOC model can be experimentally tested.
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FIG. 1. Time evolution of the eectrostatic potentia fluctuation for
different values of the collisiona diffusivity of the averaged pressure, D,
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FIG. 2. For D, =0.0001 &/trin Fig. 1, when all perturbations have
decayed, the pressure profile relaxes to a SOC steady state.
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FIG. 3. Time evolution of the total pressure and the pressure in the core.
The system reaches a steady state when N, Stays constant in time.
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FIG. 4. For the case of Fig. 3, an effective diffusivity is defined from the
flux through the r/a= 0.5 surface, which is equal to the rate of change of
DN.
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FIG. 5(a). Thevertical axisistime and the horizontal axisisradial
position. In this plane, we plot averaged pressure contours.
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FIG. 5(b). The vertical axis is time and the horizontal axis is radia
position. In this plane, we plot rms potential fluctuation contours.
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FIG. 6. Time-averaged flux and pressure gradient during the steady state
phase for the calculation in Fig. 3.
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FIG. 7. The dectrostatic potential fluctuation spectrum at r/a = 0.35,
g = p/4,and z = 0. This spectrum has the three characteristic regions

observed in the sand pile model.
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FIG. 8. Propagation of a positive pulse fromro/a= 0.2. Inthet-r plane,
we have plotted averaged pressure contours.
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FIG. 9. Averaged pressure pulse at different times for the case shown in
Fig. 7.
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FIG. 10. Time delay for the maximum of the pulse to reach the position r.
Two cases with different amplitude of the initial pulse are plotted.
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FIG. 11. Propagation of a negative pulse fromry/a= 0.6. Inthet-r plane,
we have plotted averaged pressure contours.
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FIG. 12. Time of arrival of the leading edge of the negative pulse at a
position r. The pulse moves inwards at approximately constant velocity.
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FIG. 13. Propagation of a negative pulse from ri/a= 0.6. In this case,
there is coupling to a poloidal shear flow. The pulse stops at about
rla= 0.37. In the t-r plane, we have plotted the averaged pressure
contours.
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FIG. 15. Cross-correlation of the low frequency modulation at two radial
positions peaks at atime delay corresponding to the propagation distance of
the avalanche.
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FIG. 16. Cross-correlation of the low frequency modulation at
r/a = 0.35. The crosscorrelation has a double peak at £Dt, the time delay

corresponding to the propagation distance of the avalanche.
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