
1

“The submitted manuscript has been authored by a
contractor of the U.S. Government under contract No.
DE-AC05-96OR22464. Accordingly, the U.S.
Government retains a nonexclusive royalty-free license
to publish or reproduce the published form of this
contribution, or allow others to do so, for U.S.
Government purposes.”

A Model Realization of Self-Organized Criticality
for Plasma Confinement*

B. A Carreras, D. Newman, V. E. Lynch

Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-8070

P. H. Diamond

University of California, San Diego, La Jolla, California 92093-0319

Abstract

A model for plasma transport near marginal stability is presented.  The model is based

on subcritical resistive pressure-gradient-driven turbulence.  Three-dimensional nonlinear

calculations based on this model show effective transport for subcritical mean profiles.

This model exhibits some of the characteristic properties of self-organized criticality.

Perturbative transport techniques are used to elucidate the transport properties.  Propagation

of positive and negative pulses is studied.  The observed results suggest a possible

explanation of the apparent nonlocal effects observed with perturbative experiments in

tokamaks.
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I . INTRODUCTION

Many systems in nature are self-similar over extended ranges of spatial and temporal

scales.  In those systems, scale spectra may be described by power laws, and time spectra

resemble the 1/f-like distributions.  Bak, Tang, and Wiesenfeld1 suggested that there may

be an intimate connection between the scale invariance in space and time, as is the case at

critical transitions.  Because there is no externally controlled critical parameter in natural

systems, they call this basic property self-organized criticality (SOC).  A running sand pile

has been used as a simple dynamic system that exhibits these general properties.2–4  Many

models of natural phenomena like earthquakes,5 forest fires,6 and coevolution of biological

species7 satisfy the basic hypothesis of SOC.

Here, we are interested in the particular case of the transport processes in magnetically

confined plasmas.  These processes seem to have some of the characteristic properties of

SOC systems.  For instance:

1) Since the proposal of the profile consistency principle,8 the resilience of plasma profiles

has been adopted in many transport models in a variety of formulations.  This concept

suggests that the existence of a critical gradient, or a gradient scale length, plays an

important role in confinement.

2) In the low-confinement (L-mode) regime, the energy-confinement time scales with the

minor radius of the device.  That is, transport scaling is Bohm-like.9  However, the

core fluctuation correlation length is of the order of a few ion Larmor radii.10   These

experimental results suggest the importance of interaction of disparate length scales in

L-mode transport.

3) The broad-band fluctuation spectrum in Ohmic and L-mode discharges has a frequency

dependence that is not very sensitive to changes in global parameters.  The spectral

decay is often close to 1/f.11

4) A common result of stability analysis is that experimentally measured plasma profiles

are found to be close to marginal ballooning stability.12   This finding led to L-mode

transport models based on marginal stability to ideal ballooning modes.13

Because of these properties, SOC has been proposed as a paradigm for understanding

plasma profile dynamics.14,15  Up to now, the paradigm used for the tokamak transport

application of the SOC concept has been based on the sand pile analog. For numerical

calculations,15  a cellular automaton has been used, and for the analytical studies, a

nonlinear Burgers equation14  has been examined.  It should also be noted that the situation

studied here is closer to a hydrodynamic SOC with overlapping avalanches than to a SOC
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with vanishing weak drive.  Near the threshold of avalanche overlap, the SOC dynamics

closely resemble those of a percolation cluster slightly above criticality.  Hence,

hydrodynamic models, which are motivated by analogy to fully developed turbulence, are

not applicable to the near threshold of avalanche overlap.

Here, we develop a model that contains some of the basic properties of plasma

turbulence without bringing in all the complex details of the toroidal confinement device.

This approach will allow us to explore the interplay of fluctuations and transport in a simple

model realization of a plasma near marginal stability.  This model is found to have some of

the characteristic properties of a SOC system.  In the numerical calculation presented, we

have reduced the separation of time scales characteristic of a physical experiment that makes

numerical calculations involving both fluctuations and transport time scales prohibitive.

The basic turbulence model is introduced in Sect. II, with the relaxation to a

submarginal steady state discussed in Sect. III.  The dynamical evolution of the model

leading to subcritical transport is discussed in Sect. IV.  The transport properties of the

model are further explored by perturbative transport studies in Sect. V. These studies

suggest a possible scenario to explain some of the anomalous observations when cold pulse

perturbations are triggered at the tokamak edge.  In Sect. VI, general ideas to

experimentally test models based on the SOC concept are put forward, and finally, in

Sect. VII, the conclusions of the paper are presented.

II. TURBULENCE MODEL

We start with a cylindrical plasma confined by a magnetic field with average bad curvature.

This plasma can be unstable to resistive interchange modes.  The dissipative terms control

the instability threshold.  A typical example of this type of plasma is the outer region of

sheared stellarator devices.  In the past, the resistive pressure-gradient-driven turbulence

has been used to describe these plasmas in a supercritical state.16   Now we use the same

basic model to study a subcritical state.  In this model, the fluctuation equations are the

same as those discussed in Ref. 16:
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Here, p and Φ are the pressure and electrostatic potential, the tildes indicate fluctuating

quantities (in time and space), and the angular brackets, , indicate flux surface

averaging, that is the poloidal and toroidal angular average.  The toroidal magnetic field is

B0, the ion mass is mi, the averaged radius of curvature of the magnetic field lines is rc, and

the resistivity is η.  The total flow velocity is expressed in terms of an averaged poloidal

velocity plus a fluctuating component given in terms of a stream function ˜ Φ B0  ,

  
r 

V = Vθ
ˆ θ + ∇ ˜ Φ × ˆ z ( ) / B0  , (3)

where Vθ  is the poloidal flow velocity, which is a function only of t and r, and ˆ θ  and ˆ z 

are unit vectors in the poloidal and toroidal directions, respectively.  The velocity stream
function ˜ Φ B0  is trivially related to the electrostatic potential – ˜ Φ .  In both Eqs. (1) and (2),

there is a dissipative term with the characteristic coefficients µ (the collisional viscosity) and

χ⊥ (the collisional cross-field transport), respectively.  A parallel dissipation term is also

included in the pressure equation.  This term can be interpreted as the parallel thermal

diffusivity.
The instability drive is the flux surface averaged pressure gradient, ∂ p ∂r , which is

a function of r and t.  A main difference between the model in Ref. 16 and the one

considered here is in the evolution of the flux surface averaged quantities.  The evolution

equation of the flux surface averaged pressure is
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It contains a time independent source term, S0, which is only a function of r.  This source

of particles and heat is due, for instance, to neutral beam heating and fueling.  In this case,

S0 is essentially determined by the beam deposition profile.  Even the best beams have time

and radial variations in the amount of heat deposited, this is represented by an added noise

term, S1, which we choose to be random in radius and time.  Implicitly, S1 reflects

variations on time scales slower than fluctuation time scales, hence its poloidal isotropy.

The surface averaged quantities are not static, but vary on time scales long compared to the

fluctuations.  We will discuss below the sources of noise in this system and their

meanings.  The collisional diffusion coefficient, D, is taken to be different from the one in

the fluctuation equation, Eq. (2).
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We assume that away from marginal stability there is a steady state solution, peq(r), for

which the source term is identically cancelled by the radial diffusion.  The evolution

equation of the averaged pressure is
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The main transport mechanism that we study is the turbulent transport through the

second term in the left-hand-side of Eq. (5).  However, the collisional diffusion term on

the right-hand-side is not is negligibly small for the calculations presented in this paper.

The coupling of the fluctuations to the averaged radial electric field is taken into

account only through the poloidal velocity contribution.  The time evolution of the latter is

given by
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Here, ˆ µ  is the flow damping caused by the magnetic pumping.  The nonlinear convection

terms in the poloidal momentum balance generate the nondiagonal rθ terms of the Reynolds

stress tensor, which can be interpreted as a turbulent vorticity flux.

To reach to a self-organized state (when such a state exists), it is very important for noise to

exist in the system.  In some simple dynamical models, like the sand pile, the noise is

external noise and the SOC state is reached by taking the limit of small noise.  Therefore, it

is difficult to prove the existence of such SOC states in problems that are solved

numerically.  It is even more difficult in a complex problem like the one presented here.  In

the model presented here, there are three types of noise:

1) To start the three-dimensional nonlinear calculations, a low level of background

fluctuations are initialized. These are the seeds for the instabilities to grow.  We chose

a random distribution of amplitudes and phases with an averaged fluctuation level

below 10-5.  In our experience, for fluctuation levels this low, the results in the

nonlinear regime are not sensitive to these initial conditions, although this is very

difficult to prove without a study of many realizations.  Systematic studies of the initial

conditions for these equations have only been done for two-dimensional turbulence.17  

2) There is the noise associated with the fluctuations as the resistive interchange at

different radial positions become unstable.  The fluctuations evolution is given by

Eqs. (1) and (2), and they induce transport of the averaged pressure and flow through
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the nonlinear fluxes in Eqs. (5) and (6) and generate flow through the Reynolds stress

term in Eq. (6).

3) The third source of noise is the external pressure source in Eq. (5).  Since this model

has intrinsic noise because of the fluctuations, the external noise is not necessarily

needed to reach an SOC state.  A continuum source could lead to essentially the same

results.  There are several reasons to introduce a noise source.  First, it is useful in

comparing with the sand pile analog of the transport.  A second reason is that the noise

source allows one to separate the transport events and visualize the different scale

length of these events.  As the noise becomes more continuous, the transport events

overlap and it is difficult to characterize them.  In practice, all thermal and particle

sources are noisy, therefore, such source terms are not unrealistic.”

Numerical calculations show that the time averaged steady-state profile is essentially the

same with or without the external noise source.  Therefore, for the dynamical model

including fluctuations to be close to an SOC state, such a source is not required. Tests of

the results for different types of sources have been done.  The tests are limited to a few

cases due to the expense of these calculations.  The results are not sensitive, as is shown

below.

III. EQUILIBRIUM SOLUTION NEAR MARGINAL STABILITY

To investigate the transport dynamics close to marginal stability, the model must have a

critical pressure gradient below which resistive interchange modes are stable.  This is

achieved by having finite values of the dissipative terms in the fluctuation equations.  Here,

we take µ =  0 .2  a2/τR and χ⊥ =  0 .05  a2/τR, where τR ≡ a2µ0/η is the resistive time and a

is the minor radius.  The parallel thermal diffusivity is χ|| = 105 R2/τR.  The resistivity is

such that the Lundquist number is S  =  10 5 for all these calculations and β0 2ε 2 = 0.018 .

First, we consider the evolution of the system without average poloidal velocity.  This

constitutes the simplest form of the model.  We start with a pressure profile well above the

critical profile.  To avoid problems with the boundaries, only modes with resonant surfaces

in the range 0.2 > r/a > 0.8 have been included in the calculation.  We include 220

Fourier components for the calculations without flow and 440 for those with flow.  The

radial grid resolution is ∆r =  7 .5  × 10 -4 a.  The number of modes included in these

calculations is low compared with the number we have included in studies of developed

supercritical turbulence.  However, in this model, transport is dominated by the profile

relaxation processes. Therefore, we do not expect that a broad spectrum of modes is
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needed on each flux surface.  The nonlinear evolution has been carried out with the KITE18

code.

The system has been allowed to evolve to a stable state.  The source term has been set to

zero in the pressure equation to allow the relaxation to a stable state.  To reach a SOC state,

a very low value of the average pressure diffusivity is required. Otherwise, a slow

diffusion of the averaged pressure smoothes the nonlinear modification of the average

profile and sustains the instability. This effect is illustrated in Fig. 1, where the time

evolution of the electrostatic potential fluctuation is plotted versus the time for different

values of D0.  For D0 = 0, the fluctuations decay with a decay rate comparable to the

instability growth rate.  To have a proper representation of this time scale, we need

D0 < 0.001 a2/τR.  In practice, for a full three-dimensional nonlinear calculation, it is not

possible to have D0 = 0, for numerical reasons.  Therefore, we have used D0 = 0.0001

a2/τR in all the calculations presented here.

When all perturbations have decayed and the pressure profile has relaxed (Fig. 2), the

system is in a steady state.  We will see that this state has the typical properties of the SOC

state.  First, note that this system is     not    marginally stable; it is more stable than marginal.

This fact is clear from the nonlinear evolution of a single helicity.  In Fig. 1, we have

plotted the time evolution of the rms potential fluctuation level for different values of D0.

The linear growth rate is unaffected by D0; hence, all m's grow at the same rate. At about

t = 0.008τR , the evolution enters the nonlinear phase and the instability saturates. At the

same time, the nonlinear modification of the pressure profile reduces the instability drive.

For D0 = 0, the fluctuation level decays very fast after reaching the nonlinear state.  In this

case, the pressure gradient in the nonlinear state is well below the critical gradient, and the

mode is stabilized.  Therefore, the nonlinear evolution has led the profile not to the

marginal stable point, but rather well below.  Indeed, the local gradient dynamics exhibit a

sort of inertia which results in evolving past marginality to stability.  As we increase D0, the

increased collisional diffusion smoothes the pressure profile, and the change in the gradient

can lead to sustainment of the instability.  These effects can be further studied by evaluating

the linear stability of the final profile after nonlinear evolution.  In the case of D0 = 0, the

stability calculation gives significantly negative growth rates.  The fact that the resulting

profile is more stable than marginal is a characteristic property of the SOC state,15  although

we cannot prove by just this observation alone that this state is a SOC state.

If we allow the poloidal velocity to evolve and the flow damping rate is low enough,

there is a modification of the velocity profile induced by the Reynolds stress term.  We can

now repeat the relaxation process just described.  In this case, the pressure profile after

relaxation is different from the case without flow.  The reason is the stabilizing effect of the
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poloidal velocity shear that changes the linear stability threshold and, as a consequence,

changes the critical gradient.  Therefore, the final pressure profile will depend on the

averaged level of the poloidal velocity.  Since this level is a function of the turbulence and

closely related to it, the calculation including poloidal flow can not be broken into two

steps.  A full nonlinear calculation with sources is required each time.

IV. TRANSPORT PHENOMENA IN STEADY STATE

The next step in the development of the transport model is to consider the time

evolution of the steady state with a noise source added.  Here the assumption is that, in a

time-averaged sense, the equilibrium pressure source maintains the averaged gradient.

However, this source is, in general, noisy.  This noise is responsible for the dynamics in

steady state.  The noise is taken into account in the calculation as follows.  At a fixed

number of time steps (typically between 100 and 400), a small averaged pressure

perturbation is added with a 50% probability.  This perturbation is radially localized. It has

a Gaussian form with a width of W  =  0 .01  a; the amplitude is 0.05 times the local value

of the normalized (to its r = 0 value) equilibrium pressure.  The radial location of the

averaged pressure perturbation is randomly chosen in the range 0.2 > r/a  > 0.5.  The

initial state is the stable relaxed pressure profile in Fig. 2.  A very low random level of

non-axisymmetric perturbations is also initialized (about 0.001% fluctuations) as a seed for

the instabilities.  We consider first the case without averaged poloidal velocity.

As the average pressure perturbations are added, they trigger local instabilities in the

plasma at the corresponding resonance surface.  The instability locally flattens the pressure

profile and causes a change of gradient in the nearby surfaces, which may become unstable

and so continuing the process. Eventually, the excess pressure deposited at the core is

transported to the edge of the plasma.  This process has the characteristic properties of an

avalanche.1  It is a true avalanche in the sense that there is propagation both up and down

the gradient.  The downward propagation is dominant.

To quantify the global transport process, we evaluate the time evolution of the

following quantities:

Ncore = rdr p − p
ss( )

0

0.5a

∫     and  NTotal = rdr p − p
ss( )

0

a

∫  . (7)

Here, p
ss

 is the pressure profile obtained in the previous section by relaxing the initial

pressure profile to steady state.  In Fig. 3, we plotted N core, NTotal, and ∆N  = NTotal −N core.
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We can see that after a transition time, the system reaches a steady state in which N core stays

constant in time.  That is, there is no accumulation of pressure at the core, and all added

pressure is transported out.  There is some accumulation in the outer region, r/a > 0.5,

because of the boundary conditions.  That is the reason to look at the r/a = 0.5 surface.

The effective flux through the r/a = 0.5 surface is equal to the rate of change of ∆N .

Therefore, an incremental effective diffusivity can be defined by

Deff ≡
∂∆N

∂t
r

∂ p

∂r r = 0.5 a

 . (8)

Using the same data as in Fig. 3, we have plotted the effective diffusivity as a function of

time in Fig. 4.  This incremental effective diffusivity makes sense only as a time-averaged

quantity.  Note that the theoretical calculations produce a result only in the Markovian limit.

Over the time range considered, its averaged value is Deff = 0.076 a2/τR.  This value is more

than two orders of magnitude above D0.  Therefore, as is typical in SOC systems, there is

effective transport in subcritical conditions.  Note that this diffusion is only the incremental

diffusion associated with the noise source.  It is not the total diffusion needed in

maintaining the equilibrium.  This transport coefficient is a function of the “noise level.”

That is, transport regulates itself to remove the needed amount of pressure.  To find the

scaling with noise level is difficult because it takes a long time to perform these nonlinear

calculations over the time scales required.  We investigate the scaling by the use of pressure

pulses.

The transport process has length scales that range from the individual single-mode

width, Wk, to the full plasma minor radius.  This can be seen in Fig. 5(a), where we have
plotted incremental averaged pressure, p − p

ss
, contours as a function of the radial

position and time (r-t plane).  It is easy to identify individual transport events (avalanches)

triggered by the pressure drops.  These avalanches involve the destabilization of several

instabilities at different resonant surfaces. Each avalanche can be characterized by a length

[see green contours in Fig. 5(a)].  The trajectories of the transport events in the r-t plane

clearly show that the propagation is not ballistic; it has an essentially diffusive character.  In

Fig. 5(b), we have plotted the rms level of fluctuation in the same r-t plane.  It is clear from

this plot that the dominant scale length of the fluctuations is of the order of the mode width

Wk.  This is another property of this type of model: the radial correlation length of the flux

is much longer than the fluctuation radial scale. Similarly, in the sand pile model, the

fluctuation scale is identified with the basic cell size while the avalanches can reach the

whole system size.15
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Let us find the impact of these mixed scale lengths on the diffusion coefficient.  We

can calculate the time averaged flux and the averaged pressure profile in the steady state

phase of the calculation (Fig. 6).  It is interesting to notice that the averaged flux increases

approximately linearly with radius, as in the case of the running sand pile.15   The pressure

profile shows all the structures of the order of a mode width. To calculate a diffusion

coefficient, we fit both by a linear function of r and that gives us Deff  ≈ 0.33 (r-r0).  In spite

of the apparent diffusive character of the single transport event, the averaged diffusion

coefficient has a radial scale dependence which is consistent with Bohm-type scaling.  This

result is in good agreement with the numerical sand pile results15  and with the analytical

calculations.14 

There is also a broad range of time scales involved in the transport process.  The best

way to find the relevant time scales is to Fourier-analyze the local fluctuations.  We analyze

the time trace of the electrostatic potential fluctuations at a fixed spatial location.  Because

the diamagnetic rotation terms have not been included in this calculation, the fast oscillatory

time scale is not present.  Therefore, this time trace is equivalent to the envelope of the

fluctuations trace.  The analysis of these data leads to the results plotted in Fig. 7.  The

fluctuation spectrum has three characteristic regions. In the very low frequency region, the

spectrum is flat.  For frequencies in the range 5  × 10−4 τHp
−1 < f < 10−2 τHp

−1, the

dependence of the spectrum on f is close to 1/f.  At higher frequencies, the spectrum falls

off as f−4.  These three spectral regions have been identified in the sand pile model4  and

they are characteristic of many SOC systems.

To test the resiliance of these results to the form of the external noise, we have

repeated the calculation with the same form of the noise source but decreased the size of the

pressure perturbations by a factor of 4 and increased their frequency by the same factor.  In

this way, the time integrated pressure source is the same.  The result for the diffusivity

does not change.  The transport events have stronger overlap due to the increased

frequency, but the average transport properties do not change.

The addition of poloidal flow makes this calculation considerably more complex as

there is interplay between the shear flow and turbulence.19   The shear flow is amplified by

turbulence, and at the same time the shear flow regulates the turbulence level and the

transport scales.  This interplay is very important in the case of the pulse propagation

discussed in the next section.  Here, we want to emphasize a double role played by the

shear flow. First, it changes the critical gradient, as has been discussed in the previous

section. The second effect is the decorrelation of the turbulence and of the transport events.

This second effect was studied in the sand pile model and with the Burgers equation, with

the result of the modification of the basic scaling of the effective diffusivity.  Because of the
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number of nonlinear calculations required to test this scaling, this study is beyond the scope

of the present work.

V. PULSE PROPAGATION STUDIES.

Using the model developed in the previous sections, we have studied the propagation of

pressure pulses in the plasma.  Two types of pulses have been considered: positive

pressure perturbations at the plasma center and negative pressure perturbations at the

plasma edge.

Let us first consider a positive pressure pulse produced at the center of the plasma.  An

averaged pressure perturbation is produced at r0 = 0.2 a .  We use a Gaussian form with a

width of 0.02 a.  For different values of the amplitude of the pulse, we follow its time

evolution.  In Fig. 8, we have plotted the contours of the averaged pressure perturbation in

the t-r plane, as was done in Fig. 5(a).  The pulse propagation is very similar to the one

for a single transport event plotted in Fig. 5.  The time evolution of the averaged pressure

pulse is shown in Fig. 9.  The change of the waveforms with time is quite different from

the results of simple diffusion, although the determination of the time scales will indicate

diffusive propagation.  To interpret in a quantitative way the evolution of the pulse, we use

the same method that the experimentalists use for heat pulse propagation.20   By evaluating

the time delay, ∆t, for the peak of the pulse to reach a given radial position r, we can plot ∆t

versus (r-r0)2.  From this plot (Fig. 10), we see that the propagation is consistent with

diffusive propagation, and we can derive an effective diffusivity.  The calculated effective

diffusivity is a function of the size of the pulse.  Using different size pulses, we conclude

that the dependence of the effective diffusivity with the amplitude of the pulse, P, is
Deff ∝ P0.45 .  This result is consistent with the analytical determination of the diffusivity

based on the nonlinear Burgers equation.14   However, this result also cautions us about

identifying a process with diffusion on the basis of the analysis of Fig. 10.

If a negative pressure pulse is generated at the plasma edge, the propagation dynamics

are quite different from the internal positive pulse.  A typical example of negative pulse
propagation is shown as a t-r plot in Fig. 11.  The perturbation is produced at r0 = 0.6 a

with a width of 0.02 a.  We can see that the leading edge of the pulse does not curve as it

moves inward, as would be expected if diffusion were the dominant process.  The leading

edge of the pulse moves inward at constant velocity (Fig. 12).  The propagation is fast,
Vpulse = 8.34 a τ R .  The propagation of the negative pulse has some of the characteristic

properties of a propagating front21  for fast transitions.  One of them is the large leading-
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edge velocity.  In the cases considered here, the propagation velocity is approximately
given by Vpulse ≈ γW , where γ is the supercritical instability growth rate due to the increase

of the local gradient by the pulse and W  a characteristic scale length of the instability.

Without coupling to the averaged flow shear, the averaged negative pressure pulse

propagates all the way through the plasma core.

When the self-consistent flow is coupled to the pulse evolution equation, shear flow is

amplified. The level of shear flow depends on the turbulence level generated by the pulse

and on the seed flow level. Because the latter is arbitrarily set, no definitive conclusion can

be derived from this model.  However, when the seed flow profile is above  a threshold

value, the generated shear flow can control the scale length in the problem. That is, the

pulse does not penetrate all the way to the center of the plasma (Fig. 13). In Fig. 13, we

plot the propagation of a negative pulse with parameters identical to those for the case of

Fig. 11, but with averaged flow evolution and the noise source turned on.  The

propagation of the negative pressure pulse stops at r/a ≅  0.37.  At this point a transport

barrier is formed, and confinement improves within r/a  ≤ 0.37.  There is clear evidence of

this effect because we have the noise source turned on and we can see pressure

accumulation within this region (Fig. 14).  This result is consistent with the transport

bifurcation results from the analytical predictions14  for SOC scaling with sheared flows.

The dependence of the resulting shear flow on the seed flow is one of the limitations of

this model. The sheared electric field is the real parameter to include in this model to control

the scale length of the propagation.  This should incorporate the contribution of the gradient

of the ion pressure.  In this case, because we work with a finite pressure gradient, there is

no ambiguous dependence on the seed for the electric field shear.
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VI. EXPERIMENTAL TEST OF THE SOC MODELS

There are some general ideas in the SOC model for confinement that go beyond the

limitations of the present model and could be experimentally tested.  One of them is the

concept of transport event, or avalanche-like transport. The transport events are not

continuous but intermittent. This fact by itself is not a clear test of the model because the

fluxes induced by supercritical turbulence also have intermittent character.22   What is

particular to SOC models is the difference between the characteristic scale lengths of the

fluctuations and transport events.  The high frequency range of the fluctuation spectrum

decorrelates over the scale length of a mode width.  However, the transport scale and the

low modulation frequency of the fluctuation maintain a correlation over several mode

widths.  Furthermore, because transport events are avalanches, the coherence of the cross-

correlation of the low frequency modulation at two radial positions peaks at a time delay

corresponding to the propagation distance of the avalanche, ∆t ≡ r − r0( )2
Deff .  This effect

is shown in Fig. 15 for the calculation corresponding to Fig. 5.  This long-range

correlation with propagation of the very low frequencies offers a significant experimental

test of the SOC transport mechanism.  When an avalanche starts, there is a double

propagation effect that can be interpreted as a bump moving down and a hole moving up

the profile. The cross-correlation function has two maxima, one at positive ∆t and another

at negative ∆t (Fig. 16).

A second property is the dependence of the diffusivity on the size of the pulse.  This

dependence is weak; it is a fractional power of the amplitude of the pulse.  To test this

effect, it is necessary to consider that small pulses will be below the threshold because of

the background transport level.  For large pulses, the effect of the radial electric field shear

tends to weaken the dependence on the pulse amplitude.  Therefore, it is difficult to define

the range of pulse amplitudes where this dependence can be tested.14

The spectral decay index of the fluctuations has a rather universal value.  This is a third

property of these SOC models that could be explored experimentally.  We do not have

systematic information on the gross features of the fluctuation spectra in magnetically

confined plasmas.  A superficial look at published spectra suggests some kind of universal

indexes for the broad band spectra.  However, a systematic study is called for.

A fourth property that has experimental implications is the propagation of negative

pressure pulses.  In our simple model, this is the analog of the cold pulse propagation

studied in different machines.23,24  For several years, these experiments have been a

serious puzzle.  The propagation studies of the previous section suggest a possible scenario

to explain these experiments.  The cold pulses are created at the plasma edge; they
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propagate inward by triggering a sequence of local instabilities.  The propagation is fast,

and the leading edge of the pulse propagates with a constant velocity.  With the triggering

of the local instabilities, the sheared electric field, ′ E r , is amplified.  When ′ E r  is large

enough, it stops the inward propagation of the cold pulse.  At the same time, the ′ E r   acts as

a transport barrier, and the central plasma is better confined.  The improved confinement

leads to heating of the core. The experimental identification of a transport barrier associated

with the propagation of these pulses could be a good test of this model.

VII. CONCLUSIONS

The model proposed in this paper has many of the characteristics of a SOC model,

although it is not possible to rigurously prove that it is a SOC model.  This is, of course,

partially a consequence of the ambiguity which persists in the definition of SOC.  This

model is a very simplified form of turbulence for a magnetic confinement device, but it

gives the main features of what can be expected if confinement is SOC.  The transport

properties put forward on the basis of a simple sand pile model15  are well verified in this

model that includes both fluctuations and transport.  This is an indication that the main

properties derived here do not depend on the particular underlying linear stability

mechanism.

The time evolution of positive outward-propagating pulses can be described by a

diffusive process, although the propagation is not pure diffusion. The effective diffusivity

derived from the numerical calculations scales as a fractional power (approximately square

root) of the amplitude of the pulse.

Inward-propagating negative pulses behave in a more complex way.  The leading edge

moves ballistically. With the propagating pulse there is ′ E r  amplification.  The propagation

depth of a cold pulse depends on the level of ′ E r .  The ′ E r  amplification by the pulse results

in the formation of an internal transport barrier that causes the confinement improvement at

the core.  The barrier  diffusively decays afterwards.

Many of the general features of the SOC model can be experimentally tested.
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FIG. 1.  Time evolution of the electrostatic potential fluctuation for

different values of the collisional diffusivity of the averaged pressure, D0.
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FIG. 2.  For D0 = 0.0001 a2/τR in Fig. 1, when all perturbations have

decayed, the pressure profile relaxes to a SOC steady state.
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FIG. 5(a).  The vertical axis is time and the horizontal axis is radial

position.  In this plane, we plot averaged pressure contours.
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position.  In this plane, we plot rms potential fluctuation contours.
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FIG. 9.  Averaged pressure pulse at different times for the case shown in

Fig. 7.
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FIG. 11.  Propagation of a negative pulse from r0/a = 0.6.  In the t-r plane,

we have plotted averaged pressure contours.
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FIG. 12.  Time of arrival of the leading edge of the negative pulse at a

position r. The pulse moves inwards at approximately constant velocity.
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r/a = 0.37.  In the t-r plane, we have plotted the averaged pressure

contours.
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FIG. 15.  Cross-correlation of the low frequency modulation at two radial

positions peaks at a time delay corresponding to the propagation distance of

the avalanche.
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FIG. 16.  Cross-correlation of the low frequency modulation at

r/a = 0.35. The crosscorrelation has a double peak at ±∆t, the time delay

corresponding to the propagation distance of the avalanche.


