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Abstract

The dynamics of a running sandpile is shown to undergo a dynamical tran-
sition as diffusion is increased from zero. The transition takes place after
the local diffusion has become so large as to erase the local inhomogeneities,
caused by the intermittent rain of sand, before they can trigger avalanche
activity. The system then undergoes an abrupt change with the self-similar
structure of the dynamics being replaced with quasi-periodic, near system-size
transport events. These results may have significant implications for many
of the driven physical systems for which SOC-based dynamical models have
been proposed.
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A competition between transport mechanisms with very different characteristic scale
lenghts are common in both neutral fluids and plasmas. A typical example is the transport
of particles through a set of vortices. Such a situation leads to an intermediate asymptotic
regime with transport properties, which combine disparate effects of diffusive and ballistic
transport.

Similar situations may be encountered in systems where the dominant transport mech-
anism in operation is through avalanches, as in systems whose dynamics are governed by
self-organized criticality (SOC) [1]. As an example, this is the case when collisional diffu-
sion is also present in the system. Hybrid regimes might then be expected in which, at the
same time that the transport changes, the intrinsic nature of the system dynamics may also
be altered. One system in which one might expect these hybrid regimes is a magnetically
confined plasma. There is significant experimental evidence in these plasmas supporting
the self-similar nature of plasma fluctuations and the existence of avalanche-driven trans-
port [2,3]. Perhaps more importantly, the SOC model proposed for the dynamics of plasma
transport [4,5] has provided a framework in which some previously unexplained experimental
facts [6-9] might be understood. But there are fundamental reasons to expect that diffusion
of particles and energy down the system gradients should also play an important role in the
dynamics. Furthermore, this is not a special case. The large number of models based on the
idea of self-organized-criticality that have been proposed in the last decade [10-13], together
with the near universal character of the diffusion processes, suggests that the impact that
diffusion (or other transport mechanisms) may have on SOC systems should be of very broad
interest.

In this paper we argue that neglecting diffusion can indeed lead to a reduction of the
range of dynamics found in the SOC-like models and to a narrowing of their relevance for
the description of physical systems. In particular, we show how it can strongly modify
the SOC dynamics of a SOC system even while remaining a very subdominant transport
mechanism. A dynamical transition takes place in the system as the relative importance

of diffusive transport increases beyond a critical threshold. The role of the avalanche-like



transport events characteristic of the self-similar SOC state is then abruptly taken over by
quasi-periodic constant-size edge-triggered events. As a result, the system loses its "self-
organized critical” properties. In retrospect, this conclusion might perhaps be foreseen.
Thinking of diffusion as an external drive for the system, it could, if sufficiently strong,
plausibly drive the system out of the absorbing state characteristic of SOC dynamics [14].
We will, however, show that the required diffusional component needed for this to happen
is surprisingly small.

To study the interaction of diffusive and avalanche transport, we have used a driven
directed running sandpile [15,16] with an added diffusive flux. The sandpile is composed
of L cells, each labeled by an integer index, j. Each cell stores some amount of sand, h;,
which is a continuous variable. Ny grains of sand are moved to the next cell, h;41, whenever
the local slope, Z;, exceeds a prescribed critical value, Z.. An open boundary exists at
jJ = L, and a closed boundary at j = 1. The random drive is provided by dropping a grain
of sand at each iteration with probability F. Finally, the net amount of sand diffusively
leaving (or entering, if positive) the j7 cell is T'; = Do(Z; — Z;_1). Dy is the diffusion
coefficient. In steady state, the sandpile domain is divided into two regions: 1) an inner
or upper ("diffusive”) region, where the transport is carried only by the diffusive flux and
where the slope, which is linear with j, stays below Z.— N¢; and 2) an outer or lower (”SOC-
like”) region, where transport is still dominantly driven by avalanches. These regions meet
at cell j;, which can be estimated from a flux balance calculation. This is because diffusive
transport is the only one possible for j < j;, a steady state could only be reached if all falling
sand collected for cells 1 < 5 < j; can be diffusively injected into the avalanche dominated
region, i.e., if Py j: >~ Do(Z. — Ny). Note that the directed running sandpile is one in which
the steepest gradient direction is deterministically used to define the overturning direction
and the driving rate allows the hydrodynamics regime to be accessed [16].

In this model we find a dynamical transition that takes place when the fraction of trans-
port diffusively driven out of the sandpile is still very much below unity (as low as 107> —107*

at the transition point, as estimated using DoZ¢ /Py [17]). Diffusion is thus an extremely



subdominant transport mechanism. The spatial region where all the interesting dynamics
take place is the SOC-like region. There, the dynamical regime prior to the transition is
marked by all the classic SOC characteristics. The averaged slope is constant and can be
estimated as Z ~ Z. — N;/2 [18] (see solid line in Fig. 1). There is a nearly uniform distri-
bution of avalanche initiation positions and ending positions (see upper line in Fig. 2, where
the probability of an avalanche starting at cell j is plotted against j). Additionally, clear
power-law tails are exhibited by the size probability distribution function (PDF) and the
frequency spectra, revealing self-similar structures over many scales of size and time. After
the transition, the new dynamical regime is markedly different: the slope becomes linear
with j, staying in the range Z, — N; < Z < Z. — N;/2 (see dashed line in Fig. 1). The
PDFs of avalanche initiation and termination locations become very narrow (lower line in
Fig. 2). Finally, the self-similarity is lost.

The controlling parameter for the transition seems to be x = DONJ%/PO, a combination
of the drive, diffusion, and overturning size. Its physical meaning is intimately related to
the sandpile slope roughness. This is estimated differently in the first and second dynamical

regimes:
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where the overbar denotes time-averaging and the brackets denote space-averaging over
those cells in j; < 7 < L. Notice that these definitions differ from the usual one (given by
the variance of the height profile [19]) in that the linear or parabolic trends of the height
profiles have been removed. As a result, there is no scaling of the roughness with the system
size. This roughness can be estimated, in the absence of diffusion, by R?* ~ N7/12 [18]. In
the strongly-diffusive limit, the falling sand lumps will be eroded away completely before
they can trigger any avalanche activity. Therefore, it can be estimated as R? oc Py/ Dy by
assuming a fixed underlying slope state and a characteristic time for diffusion of the lump
over the whole sandpile given by Ty ~ L?/4Dy. & thus represents the quotient of both

limits, and it is an indirect measure of which of them dominates the dynamics. In Fig. 3,
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R/Ny is plotted against x = Py/DoN7 for sandpiles with different system sizes (the drive
has been set to Py = 5-107* in order to minimize avalanche overlapping, which would
distort any a posteriori single-avalanche analysis). The collapse of all curves onto a single
one, with the two limits clearly identified, confirms the previous estimations. A good fit
to R/Ny can be found using R/N; = a1/(az + /432)1/4, where a; = 0.725 and a; = 22 (see
Fig. 3). Therefore, specifying , the external control parameter, also fixes the roughness,
which provides a clearer physical interpretation of the mechanisms behind the transition.
As we increase k the dynamics of the avalanches sharply changes, which defines the
transition point. From avalanches with a broad distribution of sizes starting nearly uniformly
over the whole sandpile, to quasiperiodic avalanches of the maximum possible size starting
from the edge. This change is illustrated in Fig. 2 where three representative examples of the
PDF of the initiation points have been plotted. There are several measures that illustrate
this transition in the dynamics. We have used the width of this PDF normalized to the
SOC-region size, which is plotted against x for several system sizes in Fig. 4. It exhibits a
sharp jump around x ~ 22, which can be seen not to be an effect of the logarithmic scale. For
low-x values, the standard deviation is large and constant. The average initiation position
(not shown) is close to the center of the avalanche-dominated region, since avalanches start
and stop all across the region. The noticeable upward spike exhibited by the standard
deviation prior to the transition is not an artifact. It is indicative of a sharp onset of a new
contribution to the PDF': that associated to the large events triggered at the lower end of the
pile (see middle line of Fig. 2). As k increases across the critical value, these edge-triggered
avalanches come to dominate. They propagate all the way up the sandpile through the
SOC-like region, which causes the sharp drop of the normalized standard deviation seen in
Fig. 4. We then conclude that the system enters the quasi-regular regime after the roughness
has decreased below a critical value, given by the implicit equation x(R.) =~ 22. The fact
that the system size does not enter in the definition for x, and no system size scaling has
been found suggests that the transition may not be a phase transition. For this reason we

have used the term dynamical transition.



The main differences between the two dynamical regimes can be seen most clearly in
the dynamics of the non-diffusive transport. In Fig. 5, two time traces for the number
of avalanching sites are shown. The left one displays the multi-amplitude multi-time scale
signatures characteristic of SOC systems. The right trace exhibits transport events that look
like quasi-periodic relaxation oscillations of relatively constant amplitude. Physically, the
roughness has been reduced, by the increasing diffusion, to the point in which no stopping
position for avalanches exists throughout the SOC-like region. Likewise, no starting position
will exist either. Diffusion is now capable of smoothing out any drop before another one is
likely to fall, preventing an increase in the local roughness. However, the lower end of the
sandpile is closer to the critical slope than any other location. This is due to both the larger
flux coming through locations near the bottom and an asymmetry introduced by the edge
itself [17]. Therefore, avalanches will always be initiated at the lower end, propagating all the
way up to the diffusive region. Effectively all of them will transport mass out of the system.
This type of avalanche then helps to provide the positive feedback mechanism needed for a
sharp transition. Since they do not start or stop in the SOC-like region they can not alter
the surface roughness. This allows for an even more rapid smoothing (remember that the
rain drops must always be smaller then the avalanche chunks, Ny, for the system to display
SOC dynamics). In this way, the SOC-like region can develop a diffusive profile (Fig. 1
dashed line). But most of the transport out of the system is still carried by avalanches.
This is caused by the limited amount of diffusive transport allowed by an edge whose slope
must stay below Z.. This mechanism is therefore insufficient to balance the system drive,
allowing the sand buildup that causes the periodic bursts.

In conclusion, in this letter we have shown that the interplay between a continuous diffu-
sive transport channel and the avalanche channel can cause a transition in the dynamics of
a self-organized critical system. The intrinsic robustness of the SOC paradigm can therefore
be compromised. This can happen even if the alternative mechanism is very subdominant,
which would usually justify its neglect in the description of the system dynamics. In this

sense, we think that these results suggest that some of the SOC paradigms proposed for



various systems of the physical and earth sciences [4,5,11-13] should perhaps be revisited,
since in many cases diffusion (or some other mechanism) is an unavoidable element of the
dynamics.

As a final comment, we think that rather than casting doubt on the usefulness of the SOC
paradigm, these extended models could in fact increase the usefulness of SOC-like models in
describing and understanding physical systems by extending the type of dynamics captured
within the model framework. For example, this type of extension might find application in
the description of tectonic systems, where creep or plastic deformations may be modeled (to
first order) as a diffusive-like response to stress buildup. In this way, previously unreachable

dynamical regimes may be now accessed within the same model.

ACKNOWLEDGMENTS

Valuable discussions with U. 5. Bhatt, M. Varela, R. Woodard, .. Garcia, C. Hidalgo, and
P. H. Diamond are gratefully acknowledged. This work has been supported in part by the
Office of Fusion Energy, U.S. Department of Energy, under contracts DE-FG03-99ER54551
and DE-AC05-000R22725 and by Spanish DGES Proyect No. FTN2000-0924-C03-01 and

Spanish Fundacién Carlos I11.



REFERENCES

[1] P. Bak, C. Tang and K. Wiesenfeld, Phys.Rev.Lett 59, 381 (1987).

[2] B.A.Carreras et al, Phys.Rev.Lett. 80, 4438 (1998).

[3] P.A. Politzer, Phys.Rev.Lett. 84, 1192 (2000).

[4] P. H. Diamond and T.S. Hahm, Phys.Plasmas 2, 3640 (1995).

[5] D.E. Newman, B.A. Carreras, P.H. Diamond, T.S. Hahm, Phys.Plasmas 3, 1858 (1996).
[6] N. Lopez Cardozo, Plasma Phys. Controlled Fusion 37, 799 (1995).

[7] C. C. Petty, T. C. Luce, K. H. Burrell, S. C. Chiu, J. S. deGrassie et al, Phys. Plasmas
2, 2342 (1995).

[8] B.A. Carreras, D.E. Newman, V. E. Lynch et al, Phys.Plasmas 3, 2903 (1996).

[9] A. Yoshizawa, S.-I Ttoh, K. Itoh, and N. Yokoi, Plasma Phys. Controlled Fusion 43, R1
(2001).

[10] T. Nagatani, Physica A 218, 145 (1995).

[11] J.M. Carlson and J.S. Langer, Phys.Rev.Lett. 62, 2632 (1989).

[12] S. Mineshige, M. Takeuchi and H. Nishimori, Astrophys.J. 435, 1.125 (1994).
[13] E. Lu and R.J. Hamilton, Astrophys.J. 380, L.89 (1991).

[14] R. Dickman, A. Vespignani and S. Zapperi, Phys.Rev.E 57, 5095 (1998).

[15] L.P. Kadanoff, S.R. Nagel, L. Wu and S.M. Zhou, Phys.Rev.A 39, 6524 (1989).
[16] T. Hwa and M. Kardar, Phys.Rev.A 45, 7002 (1992).

[17] R. Sénchez, D.E. Newman and B.A. Carreras, Nuclear Fusion, 41 247 (2001).

[18] M.V. Medvedev, P.H. Diamond and B.A. Carreras, Phys.Plasmas 3, 3745 (1996).



[19] A. Corral and M. Paczuski, Phys.Rev.Lett. 83, 572 (1999).



FIGURES

40I....I....I....I....I
354 [ e
30 r-——' """""
25
20
15
10 —N.=3,D/p =05
5 -=--N,=14,D /p = 0.5

OI""I""I""I""I
0 50 100 150 200

Cell

FIG. 1. Slope profiles before (solid line) and after (dashed line) the transition for a sandpile

Averaged slope

with L = 200.
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FIG. 2. Avalanche initiation point PDFs (see text for explanation) before (top line), near

(middle line) and past (lower line) the transition for a sandpile with L = 200.
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FIG. 3. Sandpile roughness (normalized to Ny) as function of x for varying values of L and Ny.
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FIG. 4. Standard deviation of the initiation point PDF (normalized to the size of the

SOC-region) as a function of x for several values of L and Ny.
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FIG. 5. Time trace of the number of avalanches sites before (left) and after (right) the transition

for a sandpile with L = 200.
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