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The spectral transfer dynamics of two-dimensional (2-D) drift wave turbulence over a broad 
range incorporating long- and short-wavelength extremes is studied numerically in the 
context of dissipative trapped electron convective cell turbulence. The direction, locality, and 
isotropy of energy and enstrophy transfer in wave-number space are determined by 
examining energy and enstrophy transfer rates, the enstrophy generation rate, spectra, and 
the spectrum response to perturbative impulses. Energy transfer is characterized by 
two subranges, according to the dominant nonlinearity, and a dynamically complex crossover 
region dividing the subranges. In the long-wavelength EXB subrange, energy transfer is 
nonlocal and anisotropic, proceeding to shorter wavelengths with significant generation of 
enstrophy. In the short-wavelength polarization drift subrange, energy transfer is local 
and, in the absence of sources and sinks, is dominated by an inverse cascade, consistent with 
the near conservation of enstrophy on dynamical time scales, In the crossover region, 
there is isotropic nonlocal forward transfer, as well as cascading to Iong wavelength. A 
significant shift of the frequency spectrum peak in the crossover region is shown to 
result from the cross coupling of the two nonlinearities. The shift is in the electron diamagnetic 
direction and increases with increasing wave number, consistent with the behavior of the 
renormalizcd response function. The simulation model does not incorporate the effects of 
electron inertia, and therefore does not account for the feedback of the frequency shift 
on nonlinear mode stability. Nevertheless, the simulations provide numerical validation of 
many aspects of the accompanying analytical investigation [Gang et al., Phys. Fluids 
B 5, 1128 (1993)]. 

1. INTRODUCTION 
Long-wavelength tokamak turbulence, particularly as 

it pertains to core fluctuations and confinement, is cur- 
rently an area of active investigation, both by experiment 
and theory. Following nearly a decade of neglect, renewed 
interest in this subject has been stimulated by recent theo- 
retical work on trapped ion turbulence”* and the develop- 
ment of several new core fluctuation diagnostics.3” Aug- 
menting the long-standing results of far infrared (FIR) 
laser scattering, which show wave-number spectra with en- 
ergy increasing toward the longest measured scales,6 spa- 
tially well-resolved measurements from beam emission 
spectroscopy,3 and correlation reflectometry4 have recently 
produced preliminary indication of the existence of long- 
wavelength fluctuations in the core plasma and suggest 
interesting, albeit tentative, links to confinement. 

Recent analytical work indicates that trapped ion con- 
vective cell turbulence is a viable candidate for long- 
wavelength fluctuation activity in hot, auxiliary heated 
core plasmas.’ Beyond its promise as a core fluctuation and 
transport model, however, trapped ion convective cell tur- 
bulence provides an instructive paradigm for long- 
wavelength turbulence and the spectral transfer properties 
that ultimately govern its saturation, spectral distribution 

“Aho at General Atomics, La Jolla, California 92138. 

of energy, and transport.tS2 Its usefulness as a paradigm 
follows in part from the fact that trapped ion convective 
cell turbulence can be described by a one-field fluid model, 
e.g., the Kadomtsev-Pogutse equation, thus allowing a 
succinct and transparent representation of the nonlinear 
mode-coupling process. More importantly, a generaliza- 
tion of the Kadomtsev-Pogutse model provides a mode- 
coupling representation with two nonlinearities, the EXB 
and polarization drift nonlinearities, and is therefore ge- 
neric to drift-wave-type fluctuations. For example, the 
EXB and polarization drift nonlinearities are the nonlin- 
earities that appear in the one-fluid description (Terry- 
Horton) of turbulence associated with dissipative trapped 
electron and universal modes.7 

Previous theoretical and computational analysis of 
purely trapped ion convective cell turbulence has focused 
on the long-wavelength regime, where nonlinear transfer is 
dominated by the EXB nonlinearity. These studies have 
demonstrated that the transfer of energy in wave-number 
space is directed toward short wavelength. The direct cas- 
cade of energy is possible because the conservative transfer 
of energy is not subject to any additional constraints, Le., 
besides the energy, the EXB nonlinearity conserves no 
other nontrivial quadratic quantity. In addition to a direct 
cascade of energy, the EXB nonlinearity produces energy 
transfer which is anisotropic* and highly nonlocal in wave- 
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number space. IS2 The occurrence of strong nonlocal trans- 
fer is a marked departure from the self-similar cascade 
dynamics inherent in the scaling arguments of Kolmog- 
orov. The anisotropy of transfer follows from an absence of 
symmetry induced by the k,, dependence of the nonadia- 
batic electron response in the EXB nonlinearity. The an- 
isotropy manifests itself as a transfer which is strongly non- 
local in the k,, direction (cross-field direction perpendicular 
to the density gradient) but characterized by comparable 
local and nonlocal transfer rates in the k, (gradient) di- 
rection. 

The long-wavelength regime of trapped ion convective 
cell turbulence contrasts strongly with a more familiar drift 
wave turbulence paradigm, the Hasegawa-Mima model.8 
In the Hasegawa-Mima equation, neglect of nonadiabatic 
electron dynamics eliminates the EXB nonlinearity and 
leaves the polarization drift nonlinearity (normally sub- 
dominant to the EXB nonlinearity in the long-wavelength 
limit) as the sole spectral transfer mechanism. While the 
neglect of nonadiabatic electron dynamics excludes the 
possibility of describing either instability or transport, it 
does produce a model that is nearly isomorphic to the 
quasigeostrophic equation. Accordingly, two dynamical in- 
variants are admitted by the polarization drift nonlinearity, 
i.e., the energy and the enstrophy, or mean squared vortic- 
ity. In order to satisfy both constraints, a dual cascade 
process is required with the energy undergoing an inverse 
cascade or transfer to long wavelength, as in two- 
dimensional NavierStokes turbulence. The cascade dy- 
namics of the Hasegawa-Mima equation are representative 
of the conventional view of spectral energy transfer in 2-D 
plasma turbulence. In particular, the notions of the inverse 
cascade and local transfer in wave-number space are per- 
vasive in heuristic descriptions of saturation and spectral 
dynamics. 

With nonadiabatic electrons, spectral transfer is af- 
fected by both the EXB and polarization drift nonlinear- 
ities, and enstrophy conservation, in a strict sense, is bro- 
ken. However, the polarization drift nonlinearity involves a 
higher derivative of the fluctuating potential than the E X B 
nonlinearity. Consequently, the magnitude of the polariza- 
tion drift nonlinearity becomes much larger than the mag- 
nitude of the EXB nonlinearity at short wavelengths, 
while the opposite holds at long wavelengths. It would 
seem reasonable, therefore, to predict the existence of spec- 
tral ranges in the short- and long-wavelength limits of the 
spectrum in which the transfer dynamics is dominated by 
one or the other of the nonlinear&s. This would mean 
there is a spectral range at long wavelengths where energy 
is transferred to smaller scales and in which the total en- 
strophy within the range evolves on the time scale of the 
nonlinear interaction. There would also be a range at short 
wavelengths where energy is transferred to larger scales 
and enstrophy is approximately conserved on the time 
scale of nonlinear. interactions. One of the primary aims of 
this paper is the testing of this hypothesis and the charac- 
terization of spectral transfer properties in both the inter- 
mediate range where the two nonlinearities play an active 
role and over the larger spectrum as a whole. Such a study 

is of direct relevance to trapped ion and electron turbu- 
lence because the direct transfer of energy generated at 
long wavelengths (w < obi) will inevitably carry energy to 
a spectrum region where the polarization drift nonlinearity 
is important, i.e., the dissipative trapped electron mode 
(DTEM) regime where 6$,e > W > @bP 

It is also of considerable interest to examine the inter- 
play of the two disparate transfer processes in terms of the 
locality and anisotropy of spectral transfer. In particular, 
as mentioned above, the EX B nonlinearity, acting alone, is 
known to produce transfer that is both nonlocal and 
anisotropic. 1,2 On the other hand, the polarization drift 
nonlinearity is isotropic in form, and by analogy with the 
two-dimensional Navier-Stokes equation, should transfer 
energy locally in wave-number space,’ consistent with the 
notion of a Kolmogorov-type similarity range and cascade. 

In the present work, broadband nonlinear transfer dy- 
namics is examined for dissipative trapped electron mode 
turbulence (DTEM), including both the EXE and polar- 
ization drift nonlinearities. This work is an outgrowth of a 
previous study which considered only the EXB 
nonlinearity,2 and- is based on numerical solution of a 
model equation utilizing direct measurement of local and 
nonlocal spectral transfer rates. The computational work is 
accomplished with a spectral code containing up to 41 X41 
modes. The simulations examine two general situations: 
(i) the relaxation of the spectral energy distribution from 
an initial finite-amplitude configuration in the absence of 
driving and damping, or (ii) the evolution and saturation 
of the spectrum starting from infinitesimal amplitudes un- 
der driving by unstable modes at low wave number and 
damped modes at high wave number. The first situation 
permits measurement of the nonlinear transfer rate inde- 
pendent of any particular wave-number space configura- 
tion of sources and sinks, consistent with a chosen general 
spectrum shape. This situation also enables comparison of 
the stationary spectrum achieved by relaxation from an 
initial state with the predictions of equilibrium statistical 
mechanics. The second situation .addresses the transfer 
characteristic of the most likely arrangement of sources 
and sinks. In this case, the net energy transfer in a satu- 
rated state (assuming one occurs) is not in question, since 
it will necessarily proceed from source to sink. Rather, 
these studies will determine the spectrum shape and exam- 
ine nonlinear transfer in subranges of wave-number space, 
focusing on the issues of direction, locality, and isotropy. 

A striking visualization of the energy transfer in the 
saturated state may be produced by subjecting the satu- 
rated spectrum to a large, localized (in wave-number 
space) perturbation and observing the subsequent relax- 
ation of the spectrum to its original stationary configura- 
tion. Using this technique it is possible to determine the 
direction, locality, and isotropy of transfer in various sub- 
ranges of the spectrum. This technique is the spectral an- 
alog of perturbative transport studies using modulated gas 
feed, heat pulse propagation, etc., to infer the locality, di- 
rection, and magnitude of spatial transport. As such, it 
represents a reasonably accessible means of examining 
spectral transfer and cascades in experiment. Tests of this 
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technique in simulated turbulence are reported herein. 
The principal results of this paper are now summa- 

rized. It is found that the polarization drift nonlinearity, 
acting alone, produces transfer that is both isotropic and 
local. Both properties follow directly from symmetries of 
the nonlinearity that are not present in the pure 
Kadomtsev-Pogutse model. With both nonlinearities act- 
ing simultaneously, subranges exist in which the transfer is 
virtually indistinguishable from the transfer of the domi- 
nant nonlinearity, if acting alone. Enstrophy generation is 
shown to be an effective indicator of the dominance of one 
nonlinearity over the other in these cases. If the maximum 
and minimum wave numbers restrict the spectrum to a 
range where the EXB nonlinearity dominates throughout, 
enstrophy production is significant and increases on a time 
scale of a few eddy turnover times. Energy is transferred to 
high k in an anisotropic and nonlocal process characteris- 
tic of cases in which the polarization drift nonlinearity is 
entirely absent. If the spectrum is fixed to a range in which 
the polarization drift nonlinearity dominates throughout, 
enstrophy production is weak, with an e-folding time much 
larger than the eddy turnover time. Here, a dual cascade is 
evident and transfer is isotropic and local. A third sub- 
range exists and is accessed by determining the maximum 
and minimum wave numbers so that both nonlinearities 
are roughly comparable over most of the spectrum (i.e., 
neither dominates). In this subrange, enstrophy produc- 
tion is moderate. Spectral transfer tends to be isotropic but 
retains a strong nonlocal component. In this situation, the 
local transfer develops an anisotropy which offsets the an- 
isotropy of the nonlocal flow. When undriven, undamped 
turbulence evolves from an initial spectrum peaked at low 
k, the spectrum relaxes to a time-asymptotic state that 
remains peaked at long wavelength but has two subranges 
with distinct spectral falloff rates. The subranges separate 
at the point where the two nonlinear&s are equal, with a 
slightly steeper slope in the high-k range than in the low-k 
range. Energy flow is toward higher k in the low-k sub- 
range, with the converse true in the high-k subrange. 
Present limits on k space resolution make it difficult to 
extend this subrange to sufficiently large and small wave 
number to allow each nonlinearity to dominate at the ex- 
tremes of the spectrum. It is anticipated that a larger sub- 
range would accentuate, in each of its extremes, both the 
spectrum falloff disparity and the differences in energy 
transfer direction. 

For turbulence driven by unstable modes at long wave- 
length and damped by a hyperviscous damping at small 
wavelength, there is a noticeable difference between the 
wave-number spectra that occur when either of the nonlin- 
earities is acting alone and the spectrum that occurs in the 
subrange when both nonlinearities are present and compa- 
rable. Whereas the spectrum of the EXB nonlinearity 
tends to be flat,2 it falls off toward high k with both non- 
linearities. There is a discernible change in the falloff rate 
at the wave number where the two nonlinearities are equal, 
with a flatter falloff in the longer-wavelength part of the 
spectrum. Distinct differences in the transfer rate are ob- 
served. In interpreting the transfer diagnostics, it appears 

that transfer is more sensitive to the cross coupling of the 
nonlinearities than is the spectrum. Consequently, transfer 
behavior in either subrange with the unmodified signature 
of the dominant nonlinearity is more difficult to discern in 
the relatively small wave-number space of the present sim- 
ulations. Nevertheless, the following statements represent 
the qualitative behavior of the transfer with both nonlin- 
earities in the steady state. In the EXB subrange, transfer 
is nonlocal. Above a critical wave number (related to the 
wave number where the two nonlinearities are equal), non- 
local transfer becomes weak relative to the total transfer. 
Thus there is a polarization subrange with local transfer. A 
dual cascade is evident in this region of k space and ac- 
counts for the change in spectral index in crossing from 
one subrange to the other. 

A novel and potentially important aspect of the inter- 
play between the two nonlinearities is evident in the fre- 
quency spectra of individual modes. In the regime where 
both nonlinearities are comparable, a large shift of the fre- 
quency spectrum peak is observed. For shorter-wavelength 
modes, the shift is to higher frequency and can be many 
times the diamagnetic frequency. If either nonlinearity is 
absent, or contributes only weakly to the transfer dynam- 
ics, the shift is small. Theoretically, a spectrum shift is 
found in the renormalized response function.” This shift 
arises from the cross coupling of the nonlinearities through 
the driven fluctuations. Since the EXB nonlinearity has 
one fewer spatial derivative than the polarization drift non- 
linearity, the cross-coupling term is 90” out of phase with 
the eddy damping decrement, and thus enters as a shift in 
the spectrum peak (as opposed to a broadening). The oc- 
currence of a frequency shift has a potentially significant 
impact on stability and transport,” as well as the interpre- 
tation of fluctuation measurements. A derivation of the 
frequency shift and its effect on nonlinear stability, and 
therefore on the spectrum, is explored in the article imme- 
diately preceding this one (Ref. 10). While this and the 
preceding article are intended as analytical and computa- 
tional counterparts, the present work is restricted to obser- 
vational analysis of the spectrum shift. The self-consistent 
effect of the shift on mode fluctuation levels cannot be 
described by the present computational model, and will be 
addressed in future work. 

The paper is organized as follows. The model and its 
properties are presented and discussed in Sec. II. In Sec. 
III, we describe the spectral transfer properties. To facili- 
tate interpretation of the results, a subsection examines the 
locality and isotropy of transfer of the polarization drift 
nonlinearity. In Sec. IV, measurements of the frequency 
spectrum are presented and discussed. The conclusions are 
given in Sec. V. 

II. BASIC MODEL AND PROPERTIES 
In this section the basic model is presented and the 

dynamical coupling of the two nonlinearities is analyzed 
from the perspective of the mathematical structure of the 
model. This analysis examines integral invariants, symme- 
tries in the structure of the nonlinearities, and the renor- 
malized mode equations. 
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The model utilized for this study is a trapped particle 
fluid equation. This model couples the laminar dynamics of 
collisional trapped electrons with hydrodynamic ions 
through the quasineutrality condition. The derivation of 
this equation and a discussion of its details and limitations 
have been presented elsewhere.‘127*‘0 In previous work, the 
polarization drift nonlinearity was neglected by consider- 
ing only the long-wavelength extreme of the spectrum.‘~2 
Here, the polarization drift nonlinearity is included, yield- 
ing the model equation 

$+D $f+ VD ,jy a”+@- L,DV %&-V; ’ 
ay 

+ p$,Vnii ~‘0 Vp,2V2Z+pV4Z= 0, (1) 

where n” is’the fluctuating ion density, 17D= (cTJeB) L;’ 
is the diamagnetic drift velocity, D = E~‘~V~~( 1 
+ 3~,/2)$~~~~ is a negative diffusivity describing the de- 
stabilization of DTEM modes by electron collisions, E is 
the trapped electron fraction, ~=d In T/d In n is the elec- 
tron temperature gradient parameter, vi models long- 
wavelength collisional damping, veff,e = vJ.s, y is the coef- 
ficient of the hyperviscosity introduced to model strong 
damping at high k, L, is the density gradient scale length, 
ps= (cTJeB)/C, is the ion gyroradius evaluated at the 
electron temperature, and C,= ( TJmi) 1’2 is the ion sound 
speed. In keeping with the emphasis of the present paper 
on nonlinear transfer effects, the linear polarization drift 
term responsible for linear dispersion has not been in- 
cluded in IQ. ( 1). This allows significant savings in com- 
putation time. Inclusion of this term introduces straight- 
forward modifications of subsequent equations and 
relations (for example, the energy and enstrophy defined 
below are modified when dispersion is included’O). How- 
ever, the basic mechanisms governing transfer and the con- 
cepts describing this process are unaltered. Indeed, numer- 
ical solutions with and without the linear polarization term 
included were found to be qualitatively the same for spec- 
tral ranges studied herein. 

The first nonlinearity appearing in Eq. ( 1) is the EXB 
nonlinearity, arising from YE’ vF[, where 
v~= - (c/B,)V$Xz is the EXB drift. The second nonlin- 
earity is the polarization drift nonlinearity, and arises from 
noV*v>‘), where. ~~“‘=Bo-‘(m~/e)zXv,*VvE is the 
nonlinear polarization drift. The EX B nonlinearity re- 
quires a nonadiabatic electron response (provided by the 
trapped electrons), Whereas the polarization drift nonlin- 
earity derives from the ion polarization drift. 

From Eq. ( 1 ), it is apparent that, by virtue of its ad- 
ditional spatial derivative, the polarization drift nonlinear- 
ity dominates the EXB. nonlinearity at very short wave- 
lengths. The converse holds at long wavelengths. The 
nominal crossover point is given by the wave number at 
which the two nonlinearities are equal. Assuming rough 
isotropy, so that V I aWay, this wave number is given by 
b - - 6 =. CJL,v,,, 3 bps Because the nonlinearities are 
characterized, not by a single spatial scale, but, by a triad 
interaction consisting of three waves of differing wave- 
lengths, it is more realistic to identify a region, centered 

about the crossover wave number; in which the two, non- 
linearities are comparable, rather than to speak of a single 
wave number at which the two are equal. 

Because of the presence of the EXB nonlinearity, a 
single quadratic invariant, the energy, is admitted by Eq. 
( 1) in the absence of driving and damping, i.e., 

f; j%d2x=DJ ($d%-yeE,+*d2x r 

.- p r cv2a2 &x, (2) 
‘*r. J 

where E= j-2 d2x is the energy and the terms on the right- 
hand side represent the dissipative source (inverse electron 
damping) and sinks (ion-ion collisions and hyper- 
viscosity). Only if the E X B nonlinearity is absent, is there 
a second invariant, the enstrophy, defined by 
Q = J 1 Vg\ 2 d2x. From Eq. ( 1 ), the enstrophy evolution is 
given by 

+,u 
s 

(V3K)2 d2x=- L,D V2nlr $Xz*V&c. 
s 

(3) 
The term on the right-hand side describes the generation or 
destruction of enstrophy associated with the conservative 
transfer of energy by the EXB nonlinearity. As previously 
indicated, the EXB nonlinearity in isolation transfers en- 
ergy to short wavelengths, given a spectrum that is peaked 
at long wavelength or flat, and therefore drives robust pro- 
duction of enstrophy. This term is present even in spectral 
ranges where the polarization drift nonlinearity dominates 
(k > lb). Consequently, enstrophy is not conserved even 
when the EXB nonlinearity is weak compared to the po- 
larization drift nonlinearity. However, in such a case, the 
EXB nonlinearity accounts for proportionately less of the 
total energy transfer. Because enstrophy production is tied 
to energy transfer by the EXB nonlinearity, it can be ex- 
pected that the importance of enstrophy production in the 
cascade dynamics diminishes for k > k,. This fact is also 
apparent in comparing the enstrophy production rate 

,.i(; j- ,Vii,2d2x)y1L~D~V2ii+z+id2x, 

(4) . 

with the nonlinear interaction rate or eddy turnover rate. 
For k <ke, the eddy turnover rate is controlled by the 
dominant EXB nonlinearity and can be expected to be 
comparable to the enstrophy generation rate.* For k > k. 
the eddy turnoverrate is controlled by the larger polariza- 
tion drift nonlinearity, while the enstrophy generation rate 
is tied to the weaker E X B nonlinearity. Consequently, 
there will be little enstrophy generation on the nonlinear 
interaction or nonlinear transfer time scale. This fact sug- 
gests a convenient diagnostic of the strength of the polar- 
ization drift nonlinearity in the form of the enstrophy dis- 
sipation rate po normalized to the mean oscillation time of 
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an intermediate scale mode. Results from the simulations 
will show pn-’ to range from 2-3 in the EXB subrange to 
hundreds in the polarization subrange. 

Energy transfer that is anisotropic and nonlocal in 
wave-number space is a robust feature of the EXB non- 
linearity, but at variance with the conventional picture of 
the cascade process. On the other hand, the polarization 
drift nonlinearity is of the same form as the advective non- 
linearity of the vorticity evolution equation of Navier- 
Stokes turbulence. Therefore it is reasonable to postulate 
that the polarization drift nonlinearity produces transfer 
which is local and isotropic. It is possible to associate these 
features with symmetries in the structure of the nonlinear 
coupling. These symmetries are most transparent in the 
Fourier representation of the nonlinearities. Transforming 
Eq. ( 1 ), the evolution of mode amplitudes is given by 

-k $- Dk,2~~+iV~~~+v,ff,inlk+~k4~~ 

+N~‘“XB’ +~,‘PoO =-J, 

where 

Nk cEXBd L D c kXk’z[k,,‘- (ky-ky’)]iikttk-kt 
2 n k’ 

(5) 

= ; X~:B)$&,, , 

Nk (pol)=; p$‘, c kXk’*z[ (k, -kL ‘)2-kL ‘2]&liii,& 
k’ 

= ; ‘$j)iikifk-k* . 

From Eqs. (6) and (7)) the lack of anisotropy in the E X B 
nonlinearity is evident in the appearance of the factor 
kY’ - (k,,- kY’ ) , whereas the polarization drift nonlinearity 
is manifestly isotropic. (In comparing expressions in this 
paper with those of the accompanying paper by Liang 
et al.,” it should be noted that k-k’ here is identical with 
k“ in the accompanying paper.) 

Differences between the two nonlinearities regarding 
the locality of transfer in wave-number space can also be 
deduced from Eqs. (6) and (7). From Eq. (6), the EXB 
coupling is proportional to ky’ - (k,,- k,,’ ) = 2ky’ - ky For 
a nonlocal triad consisting of a long-wavelength fluctuation 
k,, interacting with short wavelength fluctuations k,,’ and 
kY-k,,’ (k,(k,,‘, ky- k,,‘), this factor is proportional to the 
large wave number 2ky’. For local triads 
(kY-kyl- k,,- k,,‘), 2kY’ -kywky, i.e., the factor is pro- 
portional to the small wave number. Clearly, the EXB 
coupling favors nonlocal interaction. Note that this predi- 
lection for nonlocal coupling is not isotropic, but applies 
solely to the displacement in the k,, direction. By contrast, 
the comparable coupling factor in the polarization drift 
nonlinearity is (k, - k1 ‘)2-kL ‘2-kL 2 (spectrum sym- 
metries eliminate the contribution -2k, kL ‘). Because 
this factor involves the squares of the wave numbers kL ’ 
and kl -kl ‘, the large wave number kL ‘2 cancels and the 
factor is proportional to the small wave number k, 2. 

Hence the polarization drift nonlinearity, unlike the E X B 
nonlinearity, has no special weighting that favors nonlocal 
coupling (beyond the universal factors kXk’ l z and the 
spectral energy distribution &~i&-k,). The symmetries in 
the nonlinear couplings responsible for this distinction be- 
tween the E X B and polarization drift nonlinearities derive 
from the nonadiabatic electron response of the EXB non- 
linearity (4 -@<Jay) and the adiabatic electron response 
of the polarization drift nonlinearity (4 -K) . These sym- 
metries carry directly over to the energy transfer rates and 
give rise to a nonlocal transfer rate by the E XB nonlin- 
earity which dramatically exceeds the local transfer rate, 
while for the polarization drift nonlinearity, local and non- 
local transfer rates tend to be comparable. 

The existence of the frequency spectrum shift is also 
apparent from Eqs. (6) and (7) under iteration of the 
%,+.k, factor in each expression. In the iteration procedure, 
%k-kI is replaced by the formal solution of Eq. (5) (with 
k+ k-k’). This solution is obtained by placing Nr-;?) 
+ Nr:L), on the right-hand side of IQ. (5) and inverting 
the temporal operator of the left-hand side. Under stan- 
dard statistical closures, the sum in the Nk--k+ terms ofI@. 
(5) is restricted to the directly interacting triplet giving 

where Awk-’ is the inversion of the first four terms of Eq. 
(4). Substitution of Eq. ( 10) into Eqs. (6) and (7) gives 
the coherent nonlinear response from each of the nonlin- 
earities. Combining, & evolves according to 

azk 
--g- Dky2n7,+ 

ivD 
2 kpk + veK,i%t +Pk4& - 

where 

Y n1=2 s (X$!)+Xrk:B)) (x:&k+ 

+xE;ylk’) lz-k*12- 

v,$ik = 0, 

(9) 

(10) 

Note that x(‘O1 
quently, the 

(PO11 (Pal) 
xk,k’ XL-k’,-k’ 
diagonal terms 

) is 90” out of phase with x’EXB). Conse- 
diagonal terms ~~k?B)X~W~~~k! and 

produce coherent damping whiIe the off- 
x~k?)xf~~!,-k! and ~~~)x~~~!&’ pro- 

duce a phase oscillation. Accordingly, the diagonal terms 
are related to the spectrum linewidth” while the off- 
diagonal terms contribute to the frequency of the spectrum 
peak. lo Physically, the frequency shift arises from the in- 
teraction of a driven fluctuation &.&# which is 90” out of 
phase with the test and beat waves at k and k’. Clearly, it 
is cross-coupling of modes driven by each of the two non- 
linearities that produces the shift, with no shift occurring if 
either of the nonlinearities is absent. 

Substituting for xcEXB) and x(“‘) in Eq. (lo), it is 
seen that 
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Im vknl= -L,Dp:C, 2 (kXk’*z)2kY 
k’ 

X[2kl 2-kl '2] IQ12, (11) 

corresponding to an upshift for intermediate modes 
kL 2 2 (4 2). The qualitative features of this predicted 
shift, specifically its sign and its k, dependence, will be 
examined in Sec. IV. 

III. SPECTRAL TRANSFER 

In this section the spectral flow of energy over the 
spectrum range is described. The transfer properties are 
inferred from the time evolution of the wave-number spec- 
trum and the time evolution of the energy and enstrophy 
transfer rates from (or to) selected bands in wave-number 
space.2 The energy and enstrophy transfer rates due to the 
EXB nonlinearity are given in Ref. 2. With the addition of 
the polarization drift nonlinearity, the evolution of the en- 
ergy and enstrophy of the mode k is described by 

1 al&l” 
----k,lIk12+Yeff,il~k122_tr-lk41n1,12=Tk, 
2 at (12) 

(13) 

where 

Tk=L,DIm~ (kXk'*Z)ky'nk,~kk_k,~k* 
k’ 

-&“c,Re x kXk’=z(kr -kL ‘)2&&-kP~k* 
k’ 

(14) 

XRe xkXk'*zk2(kL -kl ')2ii-,&-k,i?k* 
k’ 

(15) 

are, respectively, the energy and enstrophy transfer rates 
from the mode k. Note that summing uk over all k yields 
the enstrophy production rate, Eq. (4). Summing Tk and 
uk over a band of wave numbers (typically with k,,=const 
or k,=const) yields the transfer from the given band. 
Moreover, by selecting only certain k’ values in the sums, 
the transfer rates can be formulated to identify transfer 
between coupled triplets with wave numbers that span 
more than a significant fraction of the spectrum (typically 
f to f). This allows a quantitative assessment of the relative 
magnitudes of local and nonlocal transfer. Before describ- 
ing the flow induced by the EXB and polarization drift 
nonlinearities together, it is useful to establish a reference 
in terms of the flow properties under each of the nonlin- 
earities in isolation. 

A. Transfer properties of each nonlinearity in 
isolation 

Spectral flow by the EXB nonlinearity was described 
in Ref. 2 and is briefly summarized. In the absence of 
driving and damping, spectra initially peaked at low k re- 
lax to the equipartitioned state predicted by statistical me- 
chanics. The relaxation is accomplished by a prompt non- 
local flow to the largest k,, bands (defined by k, - k,,,), 
producing, within a few eddy turnover times, spectra with 
peaks at high [ ky I . Subsequent sloshing motion excites the 
intermediate wave numbers. The energy transfer rate be- 
tween nonlocally displaced kY bands exceeds the transfer 
between closely neighboring (local) bands by an order of 
magnitude. Local and nonlocal transfer rates in the k, di- 
rection are comparable. In both directions, transfer pro- 
ceeds to high k when the spectrum is initially peaked. 
When driven by modes at low k and damped by modes at 
high k with an intermediate inertial range, the stationary 
wave-number spectrum is remarkably flat over the inertial 
range, falling off only at the damped modes. This dramatic 
deviation of the spectrum from that predicted by similarity 
arguments is another indication of strong nonlocal trans- 
fer. 

When the polarization drift nonlinearity is the sole 
nonlinear coupling mechanism, the equilibrium spectrum 
peaks at low k. Figure 1 shows the equilibrium spectrum 
(no driving or damping) reached from an initial spectrum 
with InkI -kw3 for 41 X41 modes. Relative to the initial 
spectrum, the equilibrium spectrum is more peaked at 
lower wave numbers and flatter at large wave numbers, 
indicating an inverse cascade of energy to low k, but also 
some energy transfer to high k. Indeed, the energy transfer 
rate reveals such a transfer pattern. From Fig. 2, the trans- 
fer rate Tk is positive at the lowest wave numbers and 
negative somewhat higher, indicating a primary transfer 
into the lowest wave numbers from the higher band. The 
higher band also engages in a smaller subsidiary transfer to 
even higher wave numbers, as seen in the positive peak just 
above the negative feature. In the upper half of the spec- 
trum, there is little net transfer above the noise level as 
defined by the standard deviation of the scatter in the 
transfer history. 

The transfer to low k is consistent with the dynamical 
constraints imposed by the conservation of energy and en- 
strophy. The smaller forward cascade might appear to be a 
violation of these constraints. However, as shown 
elsewhere,‘2 some energy must be transferred in the for- 
ward direction in order to generate sufficient enstrophy to 
compensate for the enstrophy destroyed by the inverse en- 
ergy cascade. The amount of energy transferred to high k 
decreases to zero as the largest wave number goes to infin- 
ity. For the rather small wave-number spaces considered 
here, however, this energy can be appreciable. This process 
contributes to the existence of two falloff rates in the equi- 
librium spectrum, a feature not anticipated by equilibrium 
statistical mechanics. 

As discussed in the previous section, the symmetries of 
the coupling coefficient of the polarization drift nonlinear- 
ity suggest that nonlocal transfer should be no larger than 
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FIG. 1. Equilibrium spectrum of undriven/undampcd turbulence with only the polarization drift nonlinearity. This spectrum is the relaxed state that 
has evolved from an initial spectrum with a fall-off index of Q= -4. The initial spectrum is identical to the initial spectrum shown in Fig. 1 of Ref. 2. 

the local transfer. In fact, as evidenced by Fig. 3, the local wavelength subrange is similar to that produced by the 
transfer rate from the band with negative transfer in Fig. 2 EXB nonlinearity alone, i.e., the transfer is to high k with 
exceeds the nonlocal transfer rate by a factor of 2 or 3. a strong nonlocal component in k,,. While the EXB dy- 
Moreover, the transfer rates in the k, and k,, directions are namics is similar in the high-k subrange, the transfer they 
found to be comparable to within a factor of 2, so that produce is small by comparison with that of the polariza- 
transfer is isotropic, as anticipated from the form of the tion drift nonlinearity, which drives a dual cascade via 
nonlinearity. local isotropic transfer. 

B. Transfer properties with both nonlinearities 
With both nonlinearities present, the transfer of energy 

and enstrophy is characterized by three general principles. 
These are now presented. ( 1) Excepting the effects repre- 
sented by the other two principles, each nonlinearity trans- 
fers energy and enstrophy throughout the spectrum as it 
would if acting alone. Because the E X B nonlinearity dom- 
inates at low k(k < b), the net transfer in the long- 

(2) With the two nonlinearities acting together, the 
spectral distribution of energy I &I 2 is modified relative to 
its configuration with a single nonlinearity. Since Tk and 
u, depend On amplitudes &, &.-k’, and %k* [Eqs. (14) 
and ( 15 )], the transfer is also modified relative to its be- 
havior for a single nonlinearity. In each of the subranges, 
the spectra, both the equilibrium and the driven/damped 
stationary spectrum, tend to look like the spectra of the 
dominant nonlinearity, when acting alone. Consequently, 
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FIG. 2. Time-averaged energy transfer rate during the relaxation leading 
to the spectrum of Fig. 1. The error bars indicate the standard deviation 
from the mean value plotted in the figure. 

FIG. 3. Local and nonlocal energy transfer rates from the band with 
negative transfer (energy outflow) during the relaxation leading to the 
spectrum of Fig. 1. 
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FIG. 4. Spectrum of undriven/undamped turbulence with both the EXB and polarization drift nonlinearities (EXB nonlinearity dominates weakly). 
This is the spectrum that occurs several eddy turnover times after the initiation of evolution. 

transfer well within each subrange continues to be charac- 
terized by the transfer of the dominant nonlinearity in iso- 
lation. Significant modifications are thus restricted to the 
crossover region around ks where the two nonlinearities 
are comparable. 

(3) The spectrum shift, Eq. ( lo), affects the transfer 
in three ways. (a) The spectrum shift contributes to the 
three-wave-phase decorrelation just as a linear frequency 
m ismatch contributes to the decorrelation. The shift m is- 
match vkvk’ + %$-k/ - ok is finite, because of the dispersion 
of the shift, and more pronounced for nonlocal triads than 
local triads. The shift-induced phase decorrelation will 
therefore lim it nonlocal transfer. However, this effect is a 
factor only in the crossover region. Outside this region, the 
shift-induced decorrelation is small relative to the phase 
decorrelation caused by the eddy damping of the dominant 
nonlinearity. (b) In a strong turbulence regime, the fre- 
quency shift in the response function of the driven fluctu- 
ation gives rise to a nonresonant contribution [off-diagonal 
terms in Eq. (lo)] to the eddy damping which can, in 
effect, be comparable to the resonant (diagonal) contribu- 
tion. In such a case, the transfer, or, equivalently, the en- 
ergetics, is directly affected by the shift. (c) The frequency 
shift affects the nonlinear stability (or free-energy extrac- 
tion) by modifying Re o in the eigenmode potential. This 
effect is most simply displayed in typical drift wave growth 
rates, which contain the factor w--o*, with instability for 
o -CO+. The role of the frequency shift on nonlinear stabil- 
ity, as it pertains to dissipative drift waves, is explored in 
Ref. 10. As noted previously, this effect is not present in 
the present computational model but will be examined 
computationally in a future reference. 

relaxation, with ka slightly larger than the median k. Fig- 
ure 4 is the spectrum a few eddy turnover times after com- 
mencing the relaxation from a initial km3 distribution. Sig- 
nificant nonlocal transfer to high-kmodes is evident in the 
peaks which have developed at high 1 k] . This peaking 
feature is isotropic in k and contrasts with the peaks that 
occur at high k,, (but not k,) at comparable times with the 
EXB nonlinearity alone. The nonlocal transfer is an un- 
m istakable signature of the EXB nonlinearity, whereas the 
tendency toward isotropy is a feature of the polarization 
drift nonlinearity. Isotropization of the high-k peaks is ac- 
complished by transfer modifications induced by the spec- 
trum distribution (principle 2). The final equilibrium spec- 
trum (Fig. 5) is mostly flat with a narrow peak at low k. 
The peak is produced by the inverse cascade of the polar- 
ization drift nonlinearity. It is more narrow than the peak 
that occurs with the polarization drift nonlinearity alone 
(Fig. 1) because of the competing transfer to high k pro- 
duced by the EXB nonlinearity. The flat portion is attrib- 
utable to the EXB nonlinearity, which tends to drive the 
spectrum to equipartition. In this regard, it is interesting to 
note that the spectrum predicted by equilibrium statistical 
mechanics is the equipartitioned spectrum, since enstrophy 
is not conserved in this case. Statistical mechanics is unable 
to account for the inverse cascade because the EXB non- 
linearity breaks enstrophy invariance even though signifi- 
cant enstrophy-conserving transfer by the polarization 
drift nonlinearity occurs. 

It should be apparent from the above that the transfer 
dynamics of the crossover region is the most difficult to 
analyze. Figures 4 and 5 depict the evolution of the spec- 
trum in the crossover region under nondriven, nondamped 

The degree of nonconservation of enstrophy, or, more 
precisely, the rate of enstrophy generation, is a measure of 
the extent of energy transfer to high k by the EXB non- 
linearity. In Fig. 6, the enstrophy evolution under non- 
driven, nondamped relaxation is plotted as a function of 
time for four spectrum configurations. These are the EXB 
and polarization subranges, in which b falls at either the 
extreme low end (polarization subrange) or high end of 
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FIG. 5. Find (time asymptotic) spectrum for undriven/undamped turbulence with both the EXB and polarization drift nonlinearities (EXB 
nonlinearity dominates weakly). 

the spectrum (EXB subrange), and two crossover region 
configurations, one in which k, is slightly to the right of 
center and one in which k, falls slightly to the left of cen- 
ter. In the EXB subrange, there is significant enstrophy 
generation, and the time scale of enstrophy production is a 
few eddy turnover times. These facts indicate that the 
transfer dynamics is dominated by the forward cascade of 
the EXB nonlinearity. In contrast, the small net enstrophy 
increase and long (many eddy turnover times) generation 
time scale evident in the polarization subrange indicate 
that the forward transfer by the EXB nonlinearity is of 
m inor overall importance. In the crossover region, the 
same general trend is evident, with the net enstrophy pro- 
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FIG. 6. Time evolution of the enstrophy for four spectrum configura- 
tions: (a) spectrum primarily in the EXB subrange, (b) spectrum pri- 
marily in the polarization drift subrange, (c) spectrum of crossover re- 
gion with slightly more of k space below the crossover wave number b, 
and (d) spectrum of crossover region with slightly more of k space above 
the crossover wave number b. The enstrophy production rate is only 
comparable to the nonlinear interaction (eddy turnover) time in (a) 
and (c). 
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duction and production rate being roughly proportional to 
the fraction of k space below lb. Taken together, these 
results suggest that, in a spectrum encompassing both su- 
branges, there is significant nonenstrophy-conserving for- 
ward transfer from kmin to b and somewhat beyond, but 
that its magnitude relative to the net transfer rapidly di- 
m inishes well beyond b. 

It is obviously important to examine the transfer dy- 
namics in a saturated spectrum achieved through the dy- 
namic balance of sources, sinks, and transfer. For dissipa- 
tive trapped ion convective cells, turbulence is driven at 
long wavelength (below b); at longer wavelengths still, 
ion-ion collisions provide a sink. The robust forward trans- 
fer of the EXB nonlinearity can be expected to carry en- 
ergy beyond b. At some scale, the energy is dissipated 
(high-k damping). While the existence of a steady state 
requires a net transfer from sources to sinks, the spectral 
energy distribution allowing saturation, and the extent of 
nonlocality and anisotropy in the transfer process must still 
be determined. In Fig. 7, the stationary spectrum is plotted 
for a configuration in which b is centrally located between 
kmin and k,,. Unstable modes occur in the low-k region 
with a stable band at the lowest wave numbers, represent- 
ing ion-ion collisional damping. A broad inertial range 
extends to the highest wave numbers where a hyperviscous 
damping provides a high-k sink. Figure 7 reveals a spec- 
trum with sharp peaks at the wave numbers of the driven 
modes, surrounded by a plateaulike region of roughly el- 
liptical shape. Beyond the plateau, the spectrum falls off 
sharply to the edge. The edge of the plateau corresponds 
roughly to the crossover point b. Comparison with the 
stationary spectrum of the EXB nonlinearity alone, which 
is flat ail the way out to the viscously damped modes,2 
indicates that significant nonlocal transfer to high k is the 
dominant process in the plateau region. Anisotropic trans- 
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FIG. 7. Spectrum of turbulence driven at long wavelength and damped by a hyperviscosity at short wavelength with an inertial range in the intermediate 
modes. There is also damping at the smallest wave numbers, representing the effect of ion-ion collisions. 

fer is the cause of the elliptical shape of the plateau. There 
is also transfer to the collisionally damped modes at low k, 
producing a steep drop-off in going below the driven wave 
numbers. This spectrum indicates that the characteristics 
of the EXB and polarization drift nonlinearities effectively 
dominate in the appropriate ranges of the spectrum. 

The transfer that underlies the spectrum in Fig. 7 is 
graphically visualized by applying an energy impulse at a 
specified wave number and observing the subsequent spec- 
trum evolution as it relaxes back to its stationary state. To 
interpret this diagnostic in cases with both the nonlineari- 
ties present, it is helpful to apply it first to the saturated 
spectra of each nonlinearity in isolation. Figure 8 illus- 
trates the relaxation of the spectrum under the EXB non- 

linearity starting from the stationary spectrum with a large 
impulse (red in color) localized to a rectangular annulus in 
k space. Shortly after the impulse, prompt nonlocal trans- 
fer carries the energy to all parts of the spectrum. The 
filamentary structure indicates anisotropic transfer. In the 
last frame, the stationary spectrum is reestablished at the 
original level. (To optimize contrast, the color scale in the 
tlrst frames is different from that of later frames.) In con- 
trast, the same experiment with the polarization drift non- 
linearity produces a slower diffusivelike spreading of en- 
ergy in k space, with the inverse cascade restoring the 
central peak, as shown in Fig. 9. When both nonlinearities 
are combined, as in Fig. 10, an impulse in the EXB sub- 
range produces prompt nonlocal but isotropic transfer 

ky ky 

kx kx 

FIG. 8. Evolution of the spectrum with driving and damping (under the EXB nonlinearity only) subsequent to an impulse of energy localized to a 
rectangular annulus in k space. Tie goes sequentiaJly from left to right and down. The 0.0 mode is at the center bottom of each snapshot and the scale 
is from red signifying the most energy to purple signifying the least energy. 
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FIG. 9. Evolution of the spectrum with driving and damping (under the polarization drift nonlinearity only) subsequent to an impulse of energy 
localized to a rectangular annulus in k space. Time goes sequentially from left to right and down. The 0,O mode is at the center bottom of each snapshot 
and the scale is from red signifying the most energy to purple signifying the least energy. 

throughout the spectrum. Subsequent frames show a 
slower diffusive inverse cascade which restores the central 
peak. In Fig. 11, the impulse is applied at high k in the 
polarization subrange. The spreading of energy is slower 
and diffusive throughout the evolution. It is readily appar- 
ent that when both nonlinearities are combined, the relax- 
ation of the impulse (at least initially) carries the unmis- 
takable signature of the subrange in which the impulse 
originates. 

IV. FREQUENCY SPECTRUM 

The frequency spectrum is generally taken to signify 
the frequency-dependent part of the power spectrum 
S,.(o), for k fixed. In terms of the solution of a spectral 
representation of the model, i.e., the solution of Eq. (5), 
the frequency spectrum is just the Fourier transform of the 
temporal autocorrelation function, obtained from the time 
history of the mode k, 

1 
Sk(@)= 2~ 

7-J 
dTeXp( --iW7)(~k(k(t’)~k*(f’+7)), 

(16) 

where ( ) is the average over a suitably chosen ensemble. 
In this section, frequency spectra are examined for a 

variety of modes and conditions with the objective of es- 
tablishing qualitatively the existence of a frequency shift 
induced by the coupling of the EXB and polarization drift 
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nonlinearities. From Eq+ (9), it is apparent that the spec- 
trum will contain a shift, given by Eq. ( 11). However, it 
should also be noted that the spectrum is a correlation, and 
the correlation of &(t’) with &*(t’+?) for small time 
differences r is not captured by simply substituting into Eq. 
( 16) the solution of Eq. (9), an approximate one-time, 
one-point equation.‘3 Specifically, Eq. (9) represents the 
coherent response, but does not capture the incoherent 
emission associated with small-scale, short-time correla- 
tion, While the dissipative part of the incoherent emission 
ultimately balances the coherent decay in a steady-state 
inertial range, and thus provides a link between the two 
components (and a way of determining the linewidth14), 
the reactive component of the incoherent emission is not 
related to the reactive part of the coherent response, Im ‘vk, 
in any simple way. Thus it is simplistic to expect that the 
frequency spectrum, and the frequency shift in particular, 
are totally described by the solution of Eq. ( 1 1).15 Indeed, 
as will be apparent, the frequency spectra are complicated 
and not readily interpreted as a localized, single-peaked 
function. Nevertheless it is apparent that a large shift in the 
mean frequency of the spectrum occurs, that the shift re- 
quires the presence of both nonlinearities, and that other 
features of Eq. ( 11) are present. 

The frequency spectra of both saturated (driven/ 
damped) turbulence and relaxing (no driving or damping) 
turbulence have been determined. In general, the spectra of 
saturated turbulence are much broader than the spectra of 
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Jw kY 
FIG. 10. Evolution of the spectrum with driving and damping and both nonlinear&s subsequent to an impulse of energy localized to a rectangular 
annulus at low k in the EXB subrange. Time goes sequentially from left to right and down. The 0,O mode is at the center bottotn of each snapshot and 
the scale is from red signifying the most energy to purple signifying the least energy. -. 

relaxing turbulence, and the shifts relative to the linewidths 
are accordingly less pronounced. The spectra of relaxing 
turbulence, on the other hand, are not stationary. Comput- 
ing the spectra from a time history that covers the entire 
relaxation, phase, these spectra have a feature. associated 
with the relaxation. Since the relaxation takes many eddy 
turnover times, and the time scale of the shift is typically 
less than an eddy turnover time, the nonstationarity of the 
spectrum poses no particular difficulty in examining the 
shifts. At most, the nonstationarity is responsible for in- 
trinsic broadening of the spectrum, but by an amount that 
is small relative to the magnitude of the shifts. For the 
above reasons, the spectra shown in the figures are for 
relaxing turbulence. 

Figure 12 shows the frequency spectra of a mode with 
small wave number for relaxing turbulence with the EXB 
nonlinearity only, the polarization drift nonlinearity only, 
and both nonlinearities. In the latter case there is a marked 
shift of the spectrum peak to higher frequency. In all cases, 
the peaks are in the electron diamagnetic direction. In Fig. 
13, the spectra for a mode with large wave number are 
displayed. For the cases with EXB and polarization drift 
nonlinear&s only, the spectra are peaked at the small 
frequency corresponding to the (linear) diamagnetic rota- 
tion [third term, Eq. (5)]. With the two nonlinearities 
combined, the spectrum becomes highly complicated, ac- 
quiring a small reproducible feature in the ion direction, 
and a much larger feature at high frequency in the electron 
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direction. The mean frequency ijk=rdw w&(w) is 
dramatically ‘- raised, as is the - width, 
Atik2=Jdo(m2’ - 2 -ok )S,( w ), relative to the, cases with a 
single nonlinearity. For the combined case of Fig. ( 13), 
i;jk=2A+ From these figures, it is clear that there is a 
marked frequency shift associated with the coexistence of 
the two nonlinearities. The magnitude of the shift, in ab- 
solute terms, is larger for the~mode with larger wave num- 
ber. For the shifted spectra of Figs. 12 and 13, 
Gk large/Gk small z 25, a number of the same magnitude as 
the ratio of the wave numbers. Both of these features are 
consistent with the shift described by Eq. ( 13). The same 
general features are also found in the spectra of steady- 
state (driven/damped) turbulence computed numerically 
for the same model. However, because of the very broad 
linewidths of the steady-state case, these features are less 
pronounced. 

Given the complexity of the frequency spectrum, espe- 
cially for high k, a more quantitative comparison with the- 
ory is beyond the scope of the present work. Future work 
will focus on a theoretical understanding of the complex 
features and inclusion of the feedback of spectrum shifts on 
the mode stability in the simulations. The existence of a 
large frequency shift at the longer wavelengths required for 
the E X B nonlinearity is interesting in light of the apparent 
observation of long-wavelength fluctuations with large 
phase velocity ( uPh > w,/k) in the Texas Experimental 
Tokamak (TEXT).16 
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FIG. 11. Evolution of the spectrum with driving and damping and both nonlinearities subsequent to an impulse of energy localized to a rectangular 
annulus at high k in the polarization drift subrange. Time goes sequentially from left to right and down. The 0,O mode is at the center bottom of each 
snapshot and the scale is from red signifying the most energy to purple signifying the least energy. 

V. CONCLUSIONS 
The spectral transfer dynamics of drift wave turbu- 

lence over the broad wave-number range incorporating 
both the EXB and polarization drift nonlinearities has 
been explored. This work is based on numerical solution of 
the single-field dissipative trapped ion convective cell tur- 
bulence model’*2 and describes the spectral transfer result- 
ing from unstable trapped ion modes at long wavelength. 
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FIG. 12. Frequency spectra of a mode with small wave number during 

relaxation without driving or damping. The spectra correspond to (a) 
EXB nonlinearity only, (b) polarization drift nonlinearity only, and (c) 
both nonlinear&s. 

Related analytical work is contained in the accompanying 
paper (Ref. 13 1. The present computational model is based 
on an “is” approximation with laminar electron dynamics 
resulting from collisional, nonadiabatic electrons. Conse- 
quently, the present computational model neglects the dy- 
namical feedback of finite-amplitude nonlinear-induced 
frequencies on mode stability. 

A variety of diagnostics, including wave-number and 
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FIG. 13. Frequency spectra of a mode with large wave number during 
relaxation without driving or damping. The spectra correspond to (a) 
EXB nonlinearity only, (b) polarization drift nonlinearity only, and (c) 
both nonlinearities. 
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frequency spectra, spectrum histories, energy and enstro- 
phy transfer rates, and spectrum impulses, are employed to 
characterize the transfer. It is found that the EXB and 
polarization drift nonlinearities transfer energy (and en- 
strophy) much as they would in isolation. Consequently, 
there are two subranges corresponding to spectral regions 
in which one nonlinearity or the other is dominant. In the 
low-k EXB subrange, the net energy transfer is directed to 
higher k with a very large nonlocal component in the ky 
direction. There is significant generation of enstrophy on 
the time scale of a few eddy turnover times. In the high-k 
polarization drift subrange, transfer is local in k. There is 
evidence for a dual cascade, and enstrophy generation is 
weak, requiring many eddy turnover times for any change 
in magnitude. The near conservation of enstrophy on dy- 
namical time scales is consistent with the observed inverse 
cascade of energy. For saturated turbulence that is driven 
at low k, damped at lower k and at high k, with an inertial 
range providing a bridge between the driven wave numbers 
and the short-wavelength damping, the spectrum is flat in 
the EXB subrange and falls off in the polarization drift 
subrange. Nonlocal transfer is responsible for the flatness 
of the spectrum at low k. 

In the crossover region where the two nonlinearities 
are comparable, there is a rich cross coupling. Energy is 
transferred nonlocally but the transfer tends to be isotro- 
pic. A significant shift in the peak of the frequency spec- 
trum occurs. This shift is directly attributable to the cou- 
pling of the two nonlinearities, as it disappears if either 
nonlinearity is set to zero. The shift increases with increas- 
ing wave number. Both of these effects are consistent with 
the theoretical shift based on the cross coupling of the two 
nonhnearities in the renormalized response function. In the 
present work, model limitations have prevented treatment 
of the back reaction of the shift on the mode dynamics. 

The visualization of energy flow by following the spec- 
tral relaxation after application of a localized impulse en- 
ergy at a given wave number is found to provide a reliable 
and graphic indication of energy flow, indicating accu- 
rately its direction, its locality in wave-number space? and 
whether transfer is isotropic. 

Future work on this model will include the frequency 
shift feedback and its modification of the mode stability 
structure. In addition, an investigation will be made of 

structures which are stable solutions of one nonlinearity 
and their persistence in the presence of both nonlinearities. 
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