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Resistive pressure gradient-driven turbulence at stellarator plasma edge
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High resolution calculations of resistive pressure gradient-driven turbulence for the plasma edge
parameters of the Advanced Toroidal Facility~ATF! @J. F. Lyonet al., Fusion Technol.10, 179
~1986!# electron cyclotron heated discharges give fluctuation levels, consistent with the
experimental measurements. This turbulence model is also used to simulate the transition from the
low confinement to the high confinement mode. The transition is triggered through the poloidal flow
amplification induced by the Reynolds stress. After the transition, the confinement improvement is
relatively low ~30%–40%!, even for unrealistically low poloidal viscosity. In the high confinement
mode, the characteristic radial scale length of the poloidal flow in the three-dimensional calculations
~separation between the lowest-n resonant surfaces! is different from the single helicity results
~radial correlation length of the fluctuations!. The simple criterion based on the ratio of shearing rate
to the linear growth rate does not quantitatively account for the fluctuation reduction. ©1997
American Institute of Physics.@S1070-664X~97!02209-X#
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I. INTRODUCTION

In stellarators, the transition from the low-confineme
mode~L mode! to the high-confinement mode~H mode! has
been less effective than in tokamaks. The confinement
provement in the H mode is only 30% higher than in the
mode.1,2 There are many possible reasons for that. It h
been argued that in stellarators~1! the neoclassical viscosit
is higher and does not allow theE3B flow shear to develop
~2! the ratio of the anomalous transport to neoclassical tra
port is lower, and as a result less improvement can be
pected; and~3! the power density in present experiments
lower, and it has not yet been possible to explore the
capabilities of stellarator confinement. It is also possible t
the Reynolds stress is less effective in amplifying the e
poloidal flow shear.3,4 The identification of the main caus
for this lower performance can give a useful insight in t
understanding of transition mechanisms and is essentia
designing a more effective stellarator. The larger viscos
implies a larger power requirement to produce the sa
amount of flow amplification. However, if the Reynold
stress fails in amplifying the shear flow, there is no sim
solution to a more effective H mode. Detailed modeling
the transition is necessary in the determination of the sou
of the problem.

To model the plasma edge in stellarators, we need
identify the basic mechanism for the turbulence drive. Ma
stellarator configurations are characterized by a magnetic
at the edge.5 For these configurations, resistive interchan
modes6 are likely unstable at the plasma edge and could
the dominant mechanism for edge plasma transport in th
devices. There is some experimental evidence for
mechanism. Several analytical and numerical studies of
sistive pressure–gradient-driven turbulence have been
ried out.7–10 However, only analytical expressions witho
the inclusion of diamagnetic effects have been compa
with experimental results. The analytically predicted res
3282 Phys. Plasmas 4 (9), September 1997 1070-664X/97
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tive interchange turbulence fluctuation levels were found
be consistent with the measured edge plasma fluctuation
els in the Advanced Toroidal Facility~ATF!,11,12 but there
have not been systematic comparisons between theory
experiment.

In recent years, the increase in computer capabilities
allowed high resolution turbulence calculations. In partic
lar, the use of dedicated CRAY Y-MP C-90 time permitte
their completion in a period of a few weeks. We have us
this opportunity to carry out a resistive interchange turb
lence calculation for the ATF plasma edge and compared
results with the fluctuation measurements.

We have used the same turbulence model to stud
transition as a test of the Reynolds stress flow amplificat
in three-dimensional~3-D! resistive interchange turbulence
In this paper, we consider only electron cyclotron hea
~ECH! discharges in ATF~no Ohmic heating!. For these dis-
charges, core ion temperatures are very low withTe /Ti@1.
Although there are no ion temperature measurements a
edge, we assume that the inequality also holds at the e
Therefore, ion diamagnetic effects have not been includ
In the transition studies, only the shear poloidal veloci
Vu8 , contributes to the shearE3B flow turbulence suppres
sion. This allows us to study the shear poloidal flow amp
fication and its characteristic radial scale in a 3-D turbulen
calculation. After the transition, the confinement improv
ment is relatively low~30%–40%!, even in the limit of neg-
ligible viscosity. The turbulent viscosity component of th
Reynolds stress quickly overcomes its flow-destabiliz
component. As a result, the level of shear amplification fl
is too low for a full suppression of the turbulence.

The radial scale length of the electric field shear is
important issue because it can set the width of the edge t
perature pedestal. In the H mode, it has been found that
characteristic radial scale length of the poloidal flow in t
3-D calculations is different from the single helicity resu
~2-D!. In the latter case, the basic scale length of the flow
/4(9)/3282/11/$10.00 © 1997 American Institute of Physics
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Downl
the radial correlation length of the fluctuations, while for t
H-mode solution the basic scale is the separation between
lowest-n resonant surfaces.

The rest of the paper is organized as follows. In Sec
the turbulence model is defined and the equilibrium con
tions, together with linear stability results, are summarized
Sec. III. The numerical results for the L-mode regime a
presented in Sec. IV, together with a comparison of the
perimental measurements. In Sec. V, the transition dynam
and the turbulence properties in the H-mode state are
cussed. Finally, the conclusions of this paper are presente
Sec. VI.

II. RESISTIVE PRESSURE GRADIENT-DRIVEN
TURBULENCE EQUATIONS

Resistive interchange modes extend uniformly along
magnetic field lines. They are flute-like instabilities. The
fore, for these instabilities it is possible to average over
toroidal magnetic field modulation induced by the helic
windings. Using the Greene and Johnson formalism13 and
assuming a straight helical system, the averaged equilibr
magnetic field geometry has cylindrical symmetry. In th
system, the magnetic field line curvature is given by the
eraged magnetic field line curvature,

k5
r̄

R0
B0

2V9, ~1!

where a prime indicates the derivative with respect to
toroidal flux andV85*dl/B is the specific volume enclose
by a flux surface. In Eq.~1!, R0 is the major radius of the
stellarator,r̄ the averaged minor radius of a flux surface, a
B0 the toroidal magnetic field value at the magnetic axis

The equations used to describe the stellarator pla
edge turbulence are the reduced equations used to stud
resistive pressure gradient-driven instability.7 Here we use
the same conventions and notations as in Ref. 7. The ge
etry is cylindrical with minor radiusa and length L0

52pR0 . We use the cylindrical coordinatesr , u, andz. In
the electrostatic approximation, the resistive press
gradient-driven turbulence model can be described by
perpendicular momentum balance equation:

rm

B0

]Ũ

]t
52

rm

B0
V'–“Ũ2

1

hB0
¹ i

2S F̃1
Teq

ueuneq
ñD

1kTeq

1

r

]ñ

]u
1

rm

B0
m1' ¹'

2 Ũ; ~2!

the equation of state,

]ñ

]t
52Ṽ'–“ñ2

dneq

dr
Ṽr1

1

hueuB0
2 ¹ i

2S F̃1
Teq

ueuneq
ñD

1D' ¹'
2 ñ1D i ¹ i

2ñ2neq “ iṼi ; ~3!

and the parallel momentum balance equation,

]Ṽi

]t
52Ṽ'–“Ṽi2Ṽi “ iṼi2

Teq

rm
“ iñ1m2' ¹'

2 Ṽi

1m i ¹ i
2Ṽi . ~4!
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Here,n is the density,V' is the perpendicular velocity,U is
the z component of the vorticity,Vi is the parallel flow ve-
locity, h is the resistivity, andrm is the mass density. Be
cause of the high electron parallel conduction, we neglect
electron temperature fluctuations,“ iT̃e50. In Eqs.~2!–~4!,
Teq is the equilibrium electron temperature profile that is n
dynamically evolved. Electron diamagnetic terms have b
included in these equations.3 The total magnetic field can b
expressed in terms of the equilibrium poloidal flux functio
Ceq, as

B52~“Ceq3ẑ!/R01B0ẑ. ~5!

The perpendicular velocity can be expressed in terms
a stream functionF/B0 ,

V'5~“F3ẑ!/B0 . ~6!

Here, ẑ is the unit vector in the toroidal direction. The ve
locity streamfunctionF/B0 is trivially related to the electro-
static potential2F. Thez component of the vorticity can be
expressed in terms of the velocity streamfunction byŨ
5¹'

2 F̃. The derivative parallel to the magnetic field,“ i , is
defined as“ i f 5B–“ f .

In Eqs.~2!, ~3!, and~4!, an overtilde identifies perturbe
quantities, and the subscript eq identifies equilibrium qua
ties. Each equation has a perpendicular dissipation term,
the characteristic coefficientsD' ~the collisional cross-field
particle transport!, m1' ~the collisional viscosity for the per
pendicular flow!, and m2' ~the collisional viscosity for the
parallel flow!. Parallel transport coefficients have also be
included in the parallel velocity and density equations. Th
are the parallel viscositym i and parallel density transpor
due to the coupling to sound waves,D i . Because the ion
temperature is very low at the edge of the ECH-heated
charges, the parallel viscosity is assumed to be classical,
is m i51.28Vi

2t i , whereVi is the ion thermal velocity and
t i the ion–ion collision time. Some calculations have be
done with only two equations, Eqs.~2! and~3!, and the par-
allel velocity has been neglected. In this case, we useD i

different from zero to simulate the coupling of the sou
waves, otherwise this coefficient is zero.

The driving term of the resistive interchange instabil
is the pressure gradient in the bad curvature region (k.0).
That is, these modes are unstable when2k(dneq/dr).0.
The second term on the right-hand side~rhs! of Eq. ~2! is the
field line bending term, which is stabilizing. The resistivi
weakens this term and allows the instability to grow.

To study the coupling between the turbulence and glo
flows, we need the poloidal flow profile evolution equatio
It is derived by taking the flux surface average of the pol
dal momentum balance equation. The resulting equa
gives the conservation of momentum:

]^Vu&
]t

52
1

r 2

]

]r
~r 2^Ṽr Ṽu&!2m̂^Vu&5^ṼrŨ&2m̂^Vu&.

~7!

Here, the angular brackets,^ &, indicate the poloidal and the
toroidal angle average over a magnetic flux surface, andm̂ is
the collisional poloidal flow damping rate. The nonline
convection terms in the poloidal momentum balance gen
3283Garcia et al.
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Downl
ate the nondiagonalru terms of the Reynolds stress tenso
which can be interpreted as a turbulent vorticity flux in E
~7!. Due to the electrostatic approximation, there is no c
tribution to the Reynolds stress from the correlation of m
netic field perturbations.

For a torsatron like ATF, the high toroidal ripple intro
duces strong damping of the toroidal velocity. For values
the poloidal Mach number,M p52Er /(BuVi), of the order
of 1 or less, the poloidal flow damping term is comparable
the equivalent tokamak term.14 Therefore, of the three pos
sible contributions to the radial electric field derived from t
averaged radial force balance,

2
Er

B
5Vu2

Bu

B
Vf2

1

ZieniB

]pi

]r
, ~8!

only the poloidal ion flow can effectively contribute in th
ECH discharges. A possible important contribution to t
electric field shear in ECH stellarator plasmas is the ju
between the electron and ion roots.15 This contribution can
be very important at the plasma core for formation of int
nal transport barriers. However, it is possibly irrelevant at
plasma edge due to the high collisionality of these plasm

In the nonlinear instability studies, we also include t
evolution of the averaged density and temperature gradie
The corresponding equations are

]^n&
]t

52
]

]r
^Ṽr ñ&1D0'

1

r

]

]r S r
]^n&
]r D . ~9!

Therefore, the complete set of equations used in the num
cal calculations discussed here is Eqs.~2!, ~3!, ~4!, ~7!, and
~9!. Note that the dissipation terms in the averaged polo
flow and density equations are not necessarily the sam
for the fluctuating quantities. The reason is that the diss
tion terms in the fluctuation quantities are used to control
mode spectrum by making the dissipation terms mode
pendent. In the case of the averaged poloidal velocity eq
tion we use a drag term.

III. EQUILIBRIUM PARAMETERS AND LINEAR
STABILITY

All calculations presented here are for ECH-hea
plasma parameters of the outer one-third region of the A
averaged radius. In the calculation, the radial variable~the
averaged radius of the flux surface in the sense of Gre
and Johnson13! has been normalized to 1.25āATF , where
āATF is the averaged ATF plasma radius. Hence, the reg
0.6a,r ,0.8a in the calculations models the regio
0.50āATF,r ,āATF in ATF plasmas. We have limited th
nonlinear calculation to this plasma region because of c
putational constraints. The averaged rotational transform
V8 profiles have been calculated from the ATF vacuum m
netic fields.16 Plasma density and electron temperature p
files have been chosen to fit the experimental ones in
region. In Fig. 1, we have plotted the rotational transfor
the averaged curvature, and the normalized electron den
and temperature profiles used in the calculations. The den
and temperature profiles are flat withinr 50.5a, and the
peak values correspond to the measured values at this
3284 Phys. Plasmas, Vol. 4, No. 9, September 1997

oaded 29 Aug 2011 to 137.229.53.151. Redistribution subject to AIP licens
,
.
-
-

f

o

e
p

-
e
s.

ts.

ri-

al
as

a-
e
e-
a-

d
F

ne

n

-
nd
-
-
is
,
ity
ity

ca-

tion. In particular, the peak density,n0 , is 4.231012 cm23,
and the peak electron temperature,Te0 , 300 eV. The mag-
netic field is 1 T and theZeff is assumed to be constant an
equal to 2. For these values of the experimental parame
the three dimensionless parameters relevant to the resi
interchange stability are b0/2e250.010, rs /a50.52
31022, and the Linquist numberS553105. Here, b0

5Te0n0 /(B2/2) is the peak beta,e5a/R is the inverse as-
pect ratio, andrs is the sound Larmor radius. The averag
curvature is negative withinr 50.5a, therefore, in this region
the resistive interchange modes are stable.

The nonlinear calculations have been performed with
initial value codeKITE.17 All quantities in Eqs.~2!–~4! are
expressed in terms of a Fourier expansion in the ang
variables of the form

f ~r ,u,z,t !5(
m,n

@ f m,n
s ~r ,t !sin~mu1nz!

1 f m,n
c ~r ,t !cos~mu1nz!#. ~10!

The Fourier components are discretized using finite diff
ences in the time and radial variables. The calculations h
been done with a nonuniform radial grid of 420 points, w
a radial resolutionDr 50.000 665 in the 0.6a,r ,0.8a re-
gion. Up to 4605 Fourier components have been include
the calculation. The maximumm value is about 110. Ove
1000 rational surfaces are resolved. The radial distribution
the components included is shown in Fig. 2. These par
eters represent a factor of 4 improvement on radial resolu
and nearly a factor of 10 on the number of Fourier comp
nents from previous calculations.7

The coefficients of the perpendicular dissipation ter
are assumed to be a function ofm. The functional form is
chosen to minimize the effect of the dissipation at lowm and
to sharply increase at highm. A convenient functional form
for our particular distribution of modes is Tanh@(m
245)/15#. At low m the coefficients of the dissipative term
are D'5m1'5m2'5531023a2/tR , and they are aug-
mented by a factor of 100 in the high-m range. In this way,
for m,45, the linear growth rate of the main helicities
only weakly affected by the dissipation, but modes withm
.45 have a reduced growth rate and form.60 they are

FIG. 1. Rotational transform, averaged curvature, the normalized den
and temperature profiles used in the calculations.
Garcia et al.
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linearly stabilized~Fig. 3!. We have a significant range o
stable modes (60,m,110). The value for the dissipatio
terms is lower than any other calculation we have done
resistive interchange turbulence. With this viscosity lev
the Reynolds number is about 33104.

Most of the diagnostics used in these calculations
based on flux surface averages of quadratic quantities,
as the rms value of the fluctuation levels and the part
flux. In terms of the expansion given in Eq.~9!, they have the
generic form

^ f̃ g̃ &5
1

2 (
m,n

~ f m,n
s gm,n

s 1 f m,n
c gm,n

c !. ~11!

Because the dissipation is low~high Reynolds number!,
we test two different time stepping methods~second- and
third-order accuracy inDt!, and monitor the step size fo
error control. The basic tests are done for single helic
calculations to reduce the expense of the test. The sec
order scheme is accurate enough. Convergence studies
been done by comparing two full 3-D nonlinear calculatio
with 2500 and 4605 Fourier components, respectively. F
ure 4 shows the nonlinear evolution of the potential fluct
tion at r 50.66a for both calculations. Since both calcula

FIG. 3. Linear growth rate of the modes in three helicities included in
nonlinear calculations.

FIG. 2. The radial distribution of the Fourier components included in
nonlinear calculations.
Phys. Plasmas, Vol. 4, No. 9, September 1997
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tions were initialized with a random set of initia
fluctuations, the initial phase of the calculations shows so
differences. However, the time-averaged quantities over
nonlinear phase agree very well. This is also the case of
basic time scales. The largest size calculations were
formed in parallel on the CRAY-MP C90 as part of the Sp
cial Parallel Processing~SPP! program at the National En
ergy Research Supercomputer Center~NERSC!. The
calculations have been made 98% parallel and an overla
close to 14 processors is routinely achieved with aggreg
speeds of about 5 Gflop/s.

IV. NONLINEAR NUMERICAL RESULTS

To begin the nonlinear calculations, we take a set
random fluctuations with averaged level of the order
1024. That is, we use the expansion in Eq.~9! with Fourier
components that are Gaussian functions ofr . Each compo-
nent peaks at the corresponding resonant surfacer s @q(r s)
5m/n# and each has an amplitude that is randomly de
mined to be between zero and 1024. The fastest growing
modes dominate the initial phase of the calculation, in wh
the fluctuations grow at an approximately exponential ra

e

FIG. 4. Nonlinear evolution of the potential fluctuation atr 50.66a for two
full 3-D nonlinear calculations with 2500 and 4605 Fourier componen
respectively.

FIG. 5. Nonlinear evolution of the density and electrostatic potential fl
tuations.

e
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After this initial phase, the density and electrostatic poten
fluctuations nonlinearly evolve to a saturated state~Fig. 5!.
The averaged density profile is slightly changed by the q
silinear effects, but maintains a nonzero gradient. At
main resonant surfaces, this change of the density pro
causes a reduction of the linear growth rates by less tha
factor of 2. Therefore, the nonlinear saturation is domina
by the transfer of energy to damped high-m modes, where it
is dissipated. The time-averaged density profile during
steady-state phase of the calculation is shown in Fig. 6
compared to the initial density profile.

To characterize the nonlinear turbulent state, the r
fluctuation levels have been time averaged over the ste
state phase. In Fig. 7, the rms electrostatic potential fluc
tion level is shown. In the figure, the singular surfaces w
n,8 are indicated with vertical bars. The time-averag
fluctuation levels have profiles that increase toward the ed
reaching values close to 10%. They show radial structu
that are correlated with the resonant surfaces of the low
n modes.18 A similar type of plot for the time-averaged po
loidal flow is presented in Fig. 8. The averaged poloidal fl
level remains small because we have used a large visc
for the m50; the n50 component of the flow (m̂

FIG. 6. The time-averaged density profile during the steady-state pha
the calculation compared to the initial density profile.

FIG. 7. Radial profile of the rms electrostatic potential fluctuation lev
averaged over the steady-state phase of the calculation. The radial po
of the singular surfaces with a lowest-n mode such asn,8 are indicated
with vertical bars.
3286 Phys. Plasmas, Vol. 4, No. 9, September 1997
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5104a/tR). As was shown by single helicity calculation
when diamagnetic effects are included,3 the flow generated
through Reynolds stress has a minimum at the resona
surfaces. This structure seems to hold in the 3-D calcu
tions, as is shown in Fig. 8. The radial scale of this flo
structure is comparable to the radial correlation length of
fluctuations.

In the steady-state phase of the nonlinear evolution
calculate the radial correlation length of the fluctuations,
first time average the coherenceg(r ,Dr ,t) at different radial
positions,

g~r ,Dr ,t ![
^ f̃ ~r ,u,z,t ! f̃ ~r 2Dr ,u,z,t !&

^ f̃ ~r ,u,z,t !2&
. ~12!

The radial correlation length,D r , is the value ofDr corre-
sponding to thee21 value of the time-averaged coherenc
As a function of the radial position, the radial correlatio
length shows some structure that is related to the lowm
rational surfaces. This is shown in Fig. 9, where we ha
plotted the radial correlation length of the electrostatic p
tential fluctuations. The density fluctuations correlati
length has a similar radial dependence, although its valu
about 12% larger. The correlation length at the position

of

,
ion

FIG. 8. The time-averaged poloidal flow profile. The radial position of t
singular surfaces with a lowest-n mode such asn,8 are indicated with
vertical bars.

FIG. 9. Radial and poloidal correlation lengths of the potential fluctuatio
in the steady-state phase as a function of the radial position.
Garcia et al.
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the rational surfaces is close to the characteristic radial w
of the linear eigenmodes,W. From Ref. 7, the renormalize
width is given byW'W0L1/6, where

W05H F b0

2e2 k
Te~r !

Te~0! S 2a

n0~0!

dn0

dr D G1/2

3
h~r !

h~0!S

q2Lq
2

marJ
1/3

a ~13!

is the radial width of the linear eigenmode andL is the
solution of the equation

L5
2

3p
lnH F b0

2e2 k
Te~r !

Te~0! S 2a

n0~0!

dn0

dr D G21

3S r

amD 4

128S h~0!S

h~r ! D 2J 2
2

p
ln L. ~14!

Here, Lq5@(1/q)(dq/dr)#21. In these expressions, we us
as the density gradient the time-averaged gradient over
nonlinear phase of the calculation and form the value of the
spectral-averaged poloidal mode number that will be
scribed later. In Fig. 10, we have plotted the renormaliz
width as a function of the radius and compared it with t
radial correlation length. The radial width tracks closely t
radial structures of the correlation length. The radial av
aged value of the radial correlation length of the electrost
potential fluctuations isD r50.007660.004a and for the
density fluctuationsD r50.008560.005a. For ATF param-
eters, these values correspond toD r50.2660.13 cm for the
potential fluctuations andD r50.2760.17 cm for the density
fluctuations.

The time-averaged poloidal wave number spectr
peaks at the lowest values ofm ~Fig. 11!. The power spec-
trum of both density and potential fluctuations has a pow
dependence form.10 with a decay index of23.5760.03.
The main difference with the spectra calculated in Ref. 9
for that casev* 50. In the present calculation,v* Þ0 and
the decay indexes are practically the same for density
potential fluctuations. This is a consequence of the ne
adiabatic behavior of the fluctuations.

We can calculate the poloidal correlation length from t
spectral-averaged poloidal mode numberm,

FIG. 10. Radial correlation length and renormalized mode width of
potential fluctuations as a function of the radial position.
Phys. Plasmas, Vol. 4, No. 9, September 1997
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(m,nm2@~Fm,n

s !21~Fm,n
c !2#

(m,n@~Fm,n
s !21~Fm,n

c !2#
. ~15!

By time averaging$m2% over the steady-state phase of t
calculation, we can evaluate the rms poloidal wave num
ku[$m2%1/2/ r̄ . For ATF edge parameters, its value vari
between 0.5 and 1.0 cm21. Then, we define as the poloida
correlation length the inverse of the spectral-averagedku ,
and its radial dependence is shown in Fig. 9. The rad
averaged poloidal correlation length isDu50.05a, about
seven times the averaged radial correlation length. This va
corresponds to 1.7 cm for ATF parameters.

The frequency spectrum for potential and density flu
tuations are similar. They peak at low frequencies and de
asv22.2. We can calculate the decorrelation time,tc , using

tc'
2

@~v22@v#2!#
, ~16!

where the square bracket indicates spectral averaging.
radial average of the potential fluctuation decorrelation ti
is tc'1.631023tR

21.
To compare the results of the turbulence calculatio

with experimental fluctuation measurements, we use
ATF fluctuation data discussed in Ref. 11. The fluctuat
data available includes the measurements by reflectome11

and edge Langmuir probes.19 The result of the comparison i
shown in Fig. 12. There is reasonable agreement between
model and the experimental data. However, the experime
fluctuation profiles seem to fall off faster with the radiu
toward the inside. Note that the drive is cut off beyo
r /aATF50.98 in the calculation. Beyond this radius, som
other drive is needed to explain the large level
fluctuations.12 Note that the averaged radius in Fig. 12
normalized toāATF instead ofa51.25āATF .

Having calculated the fluctuation amplitude and cro
correlation, it is possible to determine the effective diffus
ity by dividing the particle flux by the density gradient. Th
result is shown in Fig. 13, together with the radial profile
the particle flux. The averaged diffusivity over the rad
interval considered in these calculations isDeff

50.075ā2/tR . Since the decorrelation time of the turbulen
is tc'1.631023tR

21, the mixing length estimate for the dif

eFIG. 11. Time-averaged poloidal wave number spectrum of the electros
potential and density fluctuations.
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fusivity is D'D r
2tc'0.024ā 2/tR , which is about a factor

of 3 below the calculated diffusivity. This factor is consisten
with previous7 evaluations of the diffusivities using the mix-
ing length approximation. This value corresponds
0.1 m2/s, which is low compared with ATF confinement. Th
reason for the low value of the diffusivity is the near
adiabatic character of the fluctuations. The relative phase
tween the density fluctuations and the radial fluctuating flo
aP , is also plotted in Fig. 13. The cosine ofaP stays around
0.2 over the whole radius.

V. TRANSITION TO A HIGH-CONFINEMENT REGIME

Since this edge turbulence model seems to reprodu
some of the features of the ATF stellarator edge fluctuati
and transport, it interesting to use it to explore the propert
of the L–H transition in stellarators. The short operation tim
of the ATF did not allow an H-mode discharge to be ob
tained. However, in recent years, stellarator configurations
disparate as Compact Helical Stellarator~CHS! and Wendel-
stein 7 Advanced Stellarator~W7-AS!20 have succeeded in
obtaining H-mode discharges. The properties of the H mo
are similar in both devices. Therefore, we can assume t
given adequate operation time, ATF would also have o

FIG. 12. A comparison between the results of the turbulence calculatio
with experimental fluctuation measurements in the ATF.11

FIG. 13. Radial profile of the particle flux, the effective particle diffusivity
and the cosine of the relative phase between the density fluctuations and
radial fluctuating velocity.
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tained a similar H mode. Hence, using the present model,
can have some idea of what kind of change in confinem
may be expected.

To do a realistic simulation of the L–H transition wou
require coupling this turbulence model to the evolution
averaged profiles, including particle and energy sourc
varying the power source, and waiting for a spontane
transition. That requires carrying out the calculation ove
transport time scale. Such a long calculation is imposs
with present computer capabilities for large-scale turbule
calculations like the ones described in this paper. For
resistive interchange model used in this paper, the simp
way of causing a transition is by reducing the viscous drag
the averaged poloidal flow equation, Eq.~8!. Therefore, we
use this approach to trigger a transition. Since we are in
ested in maximizing the effects on the confinement, we t
down the viscosity by several orders of magnitude over
the radial extents of the calculation. The reason for reduc
m̂ over such a large radial region is to find out the natu
length scale of the shear flow in the improved confinem
mode and avoid the determination of the radial extent by
size of the region of low viscosity.

For the same calculation of Fig. 5, att50.0204tR , we
have reduced the averaged poloidal flow damping fromm̂
5104tR

21 to m̂51024tR
21. The transition occurs very shortl

after the change inm̂, after 731024tR , that is about 100ms
for ATF parameters. If we plot the evolution of the partic
flux with time at a fixed radial position, the transition
clearly identified~Fig. 14!. In Fig. 14, the time-averaged flu
over the H-mode phase is about a factor of 2 lower than
flux in the L-mode phase. The reduction of the flux starts
the edge but very quickly extends over most of the rad
region~Fig. 15!. The reduction shown in Fig. 14 is somewh
misleading because the plot is at a fixed radius and ther
not the same level of reduction at all radial positions. Tak
the radial average of the flux, the reduction is only abo
27%. The main cause of the flux reduction is fluctuati
reduction~Fig. 16!. The reduction in the fluctuation level i
more pronounced at the outer region. The change of the fl
tuations is also clear by looking at the potential and den
fluctuations contours~Fig. 17!. We can see a reduction in th
level and also on the characteristic scales of the fluctuatio

ns

the

FIG. 14. Nonlinear evolution of the particle flux. Att50.0204tR , the tran-
sition from the L- to the H-mode state is triggered.
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In the H-mode phase, there is also an increase in the a
aged edge density pedestal. The combination of flux red
tion and increased density gradient leads to a 35% impro
ment in the radial-averaged effective diffusivity~Fig. 18!.

The confinement improvement is relatively low, even
the limit of negligible poloidal flow damping. This is th
consequence of the structure of the Reynolds stress for r
tive interchange turbulence. The Reynolds stress has
terms.21 One is proportional to the averaged poloidal flo
velocity, and the second one is proportional to its seco
derivative,

2
1

r 2

]

]r
~r 2^Ṽr Ṽu&!ux505^ṼrŨ&ux50

5a^Vu&1b
d2^Vu&

dr2 , ~17!

where a and b are positive coefficients depending on t
fluctuation amplitude and plasma parameters. Thea term
leads to a dynamo instability and the generation of shea
flow. The b term is an effective turbulent viscosity tha
damps poloidal flow. In all these calculations, theb term
quickly overtakes thea term, leading to a saturation of th

FIG. 16. Radial profile of the rms electrostatic potential fluctuations in
L- and the H-mode states.

FIG. 15. Radial profile of the averaged particle flux in the L- and
H-mode states.
Phys. Plasmas, Vol. 4, No. 9, September 1997
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poloidal flow before the poloidal flow shear is large enou
to suppress the fluctuations, and only a partial reduction
the fluctuations is achieved.

The radial correlation length of the potential fluctuatio
remains nearly unchanged in the H-mode regime, while
density fluctuations radial correlation length is reduced. T
radial averaged value of the radial correlation length of
electrostatic potential fluctuations isD r50.007560.004a
and for the density fluctuationsD r50.00660.004a. Those
changes are consistent with the small reduction on the di
sivities. There is also little change on the poloidal wave nu
ber spectrum. There is no change in the spectral decay in
The mean value of the poloidal mode number averaged
time and radius is 15 in the L-mode phase and changes t
in the H-mode phase. The decorrelation time is also redu
in the H-mode phase. Of course, to determine the pro
decorrelation time it has to be calculated in the plasma
frame. We find that a typical decorrelation time istc'1.0
31023tR .

In these calculations, the transition is characterized b
sharp increase in the poloidal flow and poloidal flow she
~Fig. 19!. In the H-mode state, the radial oscillations in t

e

FIG. 17. Contours of the electrostatic potential and density fluctuation
the L- and H-mode phases.

FIG. 18. Radial profile of the effective particle diffusivity in the L- and th
H-mode states.
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poloidal flow profile are about a factor of 25 larger th
before the transition~Fig. 20!. Also, the scale length of the
oscillations has changed. In the L mode, the radial structu
are correlated with many of the low-n resonances surface
(n<9). The characteristic scale length of the poloidal flo
DL , is of the order of the radial correlation length, which
basically the mode width. However, in the H mode, the
dial structure of the flow is simpler and only correlates w
a few of the very lowest-n resonant surfaces~n<3 in this
particular case!. The characteristic scale length of the polo
dal flow, DH , is the distance between these surfaces, wh
is larger than the mode width. This distance is of the orde
DH'@n(n11)q8#21, wheren is the lowest resonantn num-
ber in the region considered. In the present calculations,
characteristic radial scale only varies by about 50%.
ATF parameters, this gives 0.9 cm<DH<1.7 cm.

There is a nonunique solution for the poloidal flow in t
H-mode regime. In Fig. 21, we compare the radial profile
the flow from Fig. 20 with the result from another calculatio
with different initial conditions. We have also indicated
this figure the rational surfaces associated with the minim
the poloidal flow. We can see that these surfaces are di

FIG. 19. Time evolution of the poloidal flow showing the fast increase at
transition.

FIG. 20. Radial profile of poloidal flow in the L- and the H-mode states. T
singular surfaces associated with the minima of the H-mode poloidal
profile are indicated with vertical bars.
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ent. However, the basic scale length of the flow is similar
the first case considered. In these calculations, the wave
pattern of the poloidal flow is the result of lowering th
poloidal flow damping over the whole radial extent. That
not what can be expected in the experiment. The polo
flow damping has a radial dependence that is a function
collisionality. The region of the plasma in which theE3B
flow would be significantly nonzero will probably be limite
to the near-edge region. However, to determine that dep
dence from this type calculation would require the inclusi
of sources and evolution over transport time scale.

The radial flow structure obtained in the thre
dimensional~3-D! calculations is different from the result
of single helicity 2-D calculations. In the single helicity cas
the radial scale length of the poloidal flow is basically t
mode width. This can be seen in Fig. 22, where we ha
plotted the poloidal flow from the 3-D results and compar
it with the poloidal flow for two of the main single helicities

A fluctuation reduction criterion that is commonly use
in the analysis of experiments is a simplified version of t
Biglari et al., criterion22 in which the decorrelation time o
the turbulence is taken to be the inverse of the maxim

e

w

FIG. 21. A comparison of the radial profile of poloidal flow in the H-mod
state for two calculations with different initial conditions. One profile co
responds to the same calculation as in Fig. 19. For the other calculation
singular surfaces associated with the minima of the poloidal flow are in
cated with vertical bars.

FIG. 22. Poloidal flow from the 3-D results and compared with the poloi
flow obtained from the 2-D single helicity calculation for two of the ma
helicities.
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linear growth rate. We can compare this criterion with o
results. To do so, we have chosen the radial position of
lowestq resonant modes withn<7 and calculated the maxi
mum linear growth rate,gM , for these helicities. The shea
ing rate,vs , at the corresponding resonant surfaces has b
determined by

vs5
D r

Du

d^Vu&
dr

. ~18!

In Fig. 23, we compare the fluctuation reduction factor~ratio
of the local fluctuation level in the H mode to the fluctuati
level in the L mode! to the normalized shearing rate
vs /gM . Although there is a qualitative correlation, the qua
titative agreement is poor. This result should caution us
the use of this oversimplifying form of the fluctuation redu
tion criterion.

VI. CONCLUSIONS

Resistive interchange turbulence has been used to m
the outer one-third of the ECH plasmas in the ATF devi
This model reproduces some of the features of the obse
edge turbulence:~1! the fluctuation levels and~2! the radial
correlation lengths are consistent with the measuremen
fluctuation diagnostics. However, the associated transpo
somewhat lower. This is a consequence of the nearly a
batic character of the fluctuations. The inclusion of trapp
electron instabilities23 could be necessary for a more com
plete modeling of the outer region of the plasma.

Using this same turbulence model, we have investiga
the possibility of transitions to a high-confinement mod
The physics mechanism for the transition is the creation
E3B shear flow barrier. Because of the high toroidal flo
damping in stellarators and the low ion temperature of
ECH plasmas, the only significant contribution to the elec
field shear is the poloidal velocity shear. In the framework
this model, our calculations show the following.

~1! When the poloidal flow shear is allowed to grow, there
a transition to a high-confinement regime with reducti
of the fluctuation level mostly at the outer edge regio

FIG. 23. Fluctuation reduction factor versus the normalized shearing rat
all resonant surfaces, with lowest-n values less than or equal to 7.
Phys. Plasmas, Vol. 4, No. 9, September 1997
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~2! The confinement improvement is relatively low, abo
30%, even in the limit of negligible collisional flow
damping. The effective turbulent viscosity component
the Reynolds stress quickly overcomes the dynamo
stability component@Eq. ~17!#, causing the saturation o
the poloidal flow.

~3! In the H mode, it has been found that the characteri
radial scale length of the poloidal flow in the 3-D calc
lations is different from the single helicity results. In th
latter case, the basic scale length of the flow is the ra
correlation length of the fluctuations, while for th
H-mode solution the basic scale is the separation
tween the lowest-n resonant surfaces. This scale leng
has not yet been considered in the analysis of edge t
perature pedestals.

~4! The oversimplified version of the Biglari–Diamond
Terry criterion,22 comparing the shearing rate to the lin
ear growth rate, is not quantitatively consistent with t
results of the numerical calculation. Therefore, caut
should be taken in using this form of the criterion f
experimental tests of the shear flow suppression mec
nism.

The possibilities of accessing a high-confinement
mode in stellarator ECH discharges are very limited. Neit
toroidal flow nor“pi effects can contribute to the buildu
and sustainment of the edge transport barrier, and the e
collisionality is too high to have a jump between roots of t
electric field. This calculation shows that the poloidal she
flow cannot by itself provide a high enough confineme
improvement. Therefore, some level of ion heating is pro
ably required. We have to extend the present calculation
investigate this possibility and to assess the following.

~1! For a realistic neoclassical viscosity, the effect of“pi

and Vu shear combined in creating an edge transp
barrier.

~2! The change in the radial scale length of the electric fi
when“pi is included in the calculation.
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