Resistive pressure gradient-driven turbulence at stellarator plasma edge
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High resolution calculations of resistive pressure gradient-driven turbulence for the plasma edge
parameters of the Advanced Toroidal Facili&TF) [J. F. Lyonet al, Fusion Technoll10, 179
(1986] electron cyclotron heated discharges give fluctuation levels, consistent with the
experimental measurements. This turbulence model is also used to simulate the transition from the
low confinement to the high confinement mode. The transition is triggered through the poloidal flow
amplification induced by the Reynolds stress. After the transition, the confinement improvement is
relatively low (30%—-40%, even for unrealistically low poloidal viscosity. In the high confinement
mode, the characteristic radial scale length of the poloidal flow in the three-dimensional calculations
(separation between the lowastresonant surfacgss different from the single helicity results
(radial correlation length of the fluctuation3 he simple criterion based on the ratio of shearing rate

to the linear growth rate does not quantitatively account for the fluctuation reductior.99@
American Institute of Physic§S1070-664X97)02209-X

I. INTRODUCTION tive interchange turbulence fluctuation levels were found to
be consistent with the measured edge plasma fluctuation lev-
In stellarators, the transition from the low-confinementels in the Advanced Toroidal FacilityATF),*112 but there
mode(L mode to the high-confinement modél mode has  have not been systematic comparisons between theory and
been less effective than in tokamaks. The confinement imexperiment.
provement in the H mode is only 30% higher than in the L In recent years, the increase in computer capabilities has
mode®? There are many possible reasons for that. It hasllowed high resolution turbulence calculations. In particu-
been argued that in stellaratdds the neoclassical viscosity lar, the use of dedicated CRAY Y-MP C-90 time permitted
is higher and does not allow ttiex B flow shear to develop; their completion in a period of a few weeks. We have used
(2) the ratio of the anomalous transport to neoclassical tranghis opportunity to carry out a resistive interchange turbu-
port is lower, and as a result less improvement can be exXence calculation for the ATF plasma edge and compared the
pected; and?3) the power density in present experiments isresults with the fluctuation measurements.
lower, and it has not yet been possible to explore the full We have used the same turbulence model to study a
capabilities of stellarator confinement. It is also possible thatransition as a test of the Reynolds stress flow amplification
the Reynolds stress is less effective in amplifying the edgén three-dimensiona3-D) resistive interchange turbulence.
poloidal flow sheaf:* The identification of the main cause In this paper, we consider only electron cyclotron heated
for this lower performance can give a useful insight in the(ECH) discharges in ATEno Ohmic heating For these dis-
understanding of transition mechanisms and is essential icharges, core ion temperatures are very low WigiT;> 1.
designing a more effective stellarator. The larger viscosityAlthough there are no ion temperature measurements at the
implies a larger power requirement to produce the samedge, we assume that the inequality also holds at the edge.
amount of flow amplification. However, if the Reynolds Therefore, ion diamagnetic effects have not been included.
stress fails in amplifying the shear flow, there is no simpleln the transition studies, only the shear poloidal velocity,
solution to a more effective H mode. Detailed modeling ofV},, contributes to the she&x B flow turbulence suppres-
the transition is necessary in the determination of the sourcsion. This allows us to study the shear poloidal flow ampli-
of the problem. fication and its characteristic radial scale in a 3-D turbulence
To model the plasma edge in stellarators, we need tealculation. After the transition, the confinement improve-
identify the basic mechanism for the turbulence drive. Manyment is relatively low(30%—40%, even in the limit of neg-
stellarator configurations are characterized by a magnetic hillgible viscosity. The turbulent viscosity component of the
at the edgé.For these configurations, resistive interchangeReynolds stress quickly overcomes its flow-destabilizing
mode$§ are likely unstable at the plasma edge and could beomponent. As a result, the level of shear amplification flow
the dominant mechanism for edge plasma transport in those too low for a full suppression of the turbulence.
devices. There is some experimental evidence for this The radial scale length of the electric field shear is an
mechanism. Several analytical and numerical studies of ramportant issue because it can set the width of the edge tem-
sistive pressure—gradient-driven turbulence have been caperature pedestal. In the H mode, it has been found that the
ried out/~° However, only analytical expressions without characteristic radial scale length of the poloidal flow in the
the inclusion of diamagnetic effects have been compare@-D calculations is different from the single helicity results
with experimental results. The analytically predicted resis{2-D). In the latter case, the basic scale length of the flow is
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the radial correlation length of the fluctuations, while for theHere,n is the densityyV |, is the perpendicular velocity) is
H-mode solution the basic scale is the separation between tlike z component of the vorticityy, is the parallel flow ve-
lowestn resonant surfaces. locity, # is the resistivity, anth,, is the mass density. Be-

The rest of the paper is organized as follows. In Sec. ll,cause of the high electron parallel conduction, we neglect the
the turbulence model is defined and the equilibrium condielectron temperature fluctuatiorﬁ"'fe: 0. In Egs.(2)—(4),
tions, together with linear stability results, are summarized irT . is the equilibrium electron temperature profile that is not
Sec. Ill. The numerical results for the L-mode regime aredynamically evolved. Electron diamagnetic terms have been
presented in Sec. IV, together with a comparison of the exincluded in these equatiofisThe total magnetic field can be
perimental measurements. In Sec. V, the transition dynamicsxpressed in terms of the equilibrium poloidal flux function,
and the turbulence properties in the H-mode state are dis{feq, as
géscse\tljl. Finally, the conclusions of this paper are presented in B= — (Voo 2)/Ry+ By2. ®)

The perpendicular velocity can be expressed in terms of

Il. RESISTIVE PRESSURE GRADIENT-DRIVEN a stream functionb/By,
TURBULENCE EQUATIONS V, = (Vdx3)/B,. ©)

Resistive interchange modes extend uniformly along thei‘_| 5 is th . in th idal directi Th
magnetic field lines. They are flute-like instabilities. There- ere, z is the unit vector in the toroidal direction. The ve-

fore, for these instabilities it is possible to average over théotc'tt_y Strfanuﬁg'oﬁ/ By is trivially treﬁtﬁ dto ihgtelectrg-
toroidal magnetic field modulation induced by the helical S'&1C Potentiar@. Thez component o the vorticity can be

windings. Using the Greene and Johnson formalisemd exp;efsed in terms of the velocity streamfunction By
assuming a straight helical system, the averaged equilibriurt V1 ®- The derivative parallel to the magnetic fieMy, is

magnetic field geometry has cylindrical symmetry. In thisdefined asv, f=B-Vf. o
system, the magnetic field line curvature is given by the av- 1N Egs.(2), (3), and(4), an overtilde identifies perturbed

eraged magnetic field line curvature, quantities, and the subscript eq id.entifies.eq.uilib.rium quant'i-
_ ties. Each equation has a perpendicular dissipation term, with

= I B2\/" 1) the characteristic coefficienf3, (the collisional cross-field

Ry ° ' particle transpojt uq, (the collisional viscosity for the per-

dendicular flow, and u,, (the collisional viscosity for the
parallel flow). Parallel transport coefficients have also been
included in the parallel velocity and density equations. They
gare the parallel viscosity; and parallel density transport
due to the coupling to sound wavds,. Because the ion
miemperature is very low at the edge of the ECH-heated dis-

edge turbulence are the reduced equations used to study tiB2r9es: thezparallel viscosity is assumed to be classical, that
resistive pressure gradient-driven instabilitidere we use 'S #1=1.28Vi7i, whereV; is the ion thermal velocity and

the same conventions and notations as in Ref. 7. The geord the ion—ion collision time. Some calculations have been

etry is cylindrical with minor radiusa and lengthL, done with only two equations, EqE2) and(3), and the par-
—27R,. We use the cylindrical coordinates 6, andz. In allel velocity has been neglected. In this case, we Dge

the electrostatic approximation, the resistive pressurdifférent from zero to simulate the coupling of the sound

gradient-driven turbulence model can be described by th¥/aves, otherwise this coefficient is zero. _ -
perpendicular momentum balance equation: The driving term of the resistive interchange instability
is the pressure gradient in the bad curvature region @).

That is, these modes are unstable wher(dng,/dr)>0.

The second term on the right-hand sides) of Eq. (2) is the

_ field line bending term, which is stabilizing. The resistivity
Ea_nJr Pm v20- @) weakens this term and allows the instability to grow.

e 5o By ML LT To study the coupling between the turbulence and global

flows, we need the poloidal flow profile evolution equation.

It is derived by taking the flux surface average of the poloi-

where a prime indicates the derivative with respect to th
toroidal flux andv’ = [dI/B is the specific volume enclosed
by a flux surface. In Eq(l), Ry is the major radius of the
stellaratory the averaged minor radius of a flux surface, an
B, the toroidal magnetic field value at the magnetic axis.

The equations used to describe the stellarator plas

pm Y _ Pm
By ot Bo

(’I;‘F h 'ﬁ)
€[ neg

V,-VU 1 v2
. 7By !

+ kT

the equation of state,

N~ __ dng- 1 of = Teq ~ dal momentum balance equation. The resulting equation
ot —V,-Vn- dr Vit nle|B2 Vil o+ |eNeq n gives the conservation of momentum:
2% = T - V) 19 ~ R ~—
DL VINTD, Vin—Neg ViVi; ® = 2o (V) = iV =(VU) = (V).
and the parallel momentum balance equation, 7)
(7T/H = o= = o= Teq_ ~ v Here, the angular bracket§), indicate the poloidal and the
o S AR\ Pm Vint pa VIV toroidal angle average over a magnetic flux surface,aisl
~ the collisional poloidal flow damping rate. The nonlinear
2 . . .
Ty ViV (4) convection terms in the poloidal momentum balance gener-
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ate the nondiagonalé terms of the Reynolds stress tensor, 3.0

which can be interpreted as a turbulent vorticity flux in Eq. —— ROTATIONAL TRANSFORM — -ngqg 14
(7). Due to the electrostatic approximation, there is no con-z 2517~ CURVATURE — T A,
tribution to the Reynolds stress from the correlation of mag- @ i o
netic field perturbations. 25 i T T S
For a torsatron like ATF, the high toroidal ripple intro- &£ < 5k N, \ ' =

duces strong damping of the toroidal velocity. For values ol &‘% _ N \ i N
the poloidal Mach numbe ,= —E, /(B,V;), of the order §% 1ok KN / E:
of 1 or less, the poloidal flow damping term is comparable to g < | )\/' z
the equivalent tokamak terfi. Therefore, of the three pos- & os[ ‘\.\' 1.7
sible contributions to the radial electric field derived from the e
averaged radial force balance, 0 0 o2 oa 05 08 1.8

Er B(; 1 Ip; 8 ria

B © B ¢ ZienB or ’ ( ) FIG. 1. Rotational transform, averaged curvature, the normalized density,

. . . . . and temperature profiles used in the calculations.
only the poloidal ion flow can effectively contribute in the P P

ECH discharges. A possible important contribution to the
electric field shear in ECH stellarator plasmas is the jumgion. |n particular, the peak densityl, is 4.2< 1012 cm 3

kt))etween. the ?Iec,:[trotnthandllon roé?sThllcs cfo ntrlbtgtlon fcar: and the peak electron temperatufgy, 300 eV. The mag-
€ very important at the plasma core for formation ot INter-p oy fieq 5 1 T and theZ 4 is assumed to be constant and
nal transport barriers. However, it is possibly irrelevant at the

| dae due 1o the hiah collisionality of th | equal to 2. For these values of the experimental parameters,
plasma edge due fo the high collisionality o tNese plaSMaSy,q 1yree dimensionless parameters relevant to the resistive

In the nonlinear instability studies, we also include theinterchange stability are By/2¢2=0.010, p./a=0.52
evolution of the averaged density and temperature gradients, 152 and the Linquist nu?nbeS=5>< 108 SHere .ﬂo

The corresponding equations are =TeoNo/(B?/2) is the peak betas=al/R is the inverse as-
a(n) J ~ 19 on) pect ratio, antpg is the sound Larmor radius. The averaged
ot gr \Vr roor ( a_r) (9 curvature is negative within=0.5a, therefore, in this region

) ) the resistive interchange modes are stable.

Therefore, the complete set of equations used in the numeri-  The nonlinear calculations have been performed with the

cal calculations discussed here is E@®, (3), (4), (7), and injtial value codexiTe.” All quantities in Egs.(2)—(4) are

(9). Note that the dissipation terms in the averaged poloidagypressed in terms of a Fourier expansion in the angular
flow and density equations are not necessarily the same $iables of the form

for the fluctuating quantities. The reason is that the dissipa-

tion terms in the fluctuation quantities are used to control the _ s :

mode spectrum by makingqthe dissipation terms mode de- f(r,e,g,t)—mZn [ DSINMO+n7)
pendent. In the case of the averaged poloidal velocity equa- c
tion we use a drag term. +imna(r,icodmé+nd)]. (10

The Fourier components are discretized using finite differ-
ences in the time and radial variables. The calculations have
been done with a nonuniform radial grid of 420 points, with
a radial resolutiomr =0.000 665 in the 0&<r<0.8a re-

All calculations presented here are for ECH-heatedgion. Up to 4605 Fourier components have been included in
plasma parameters of the outer one-third region of the ATRhe calculation. The maximumm value is about 110. Over
averaged radius. In the calculation, the radial varigbdie 1000 rational surfaces are resolved. The radial distribution of
averaged radius of the flux surface in the sense of Greerthe components included is shown in Fig. 2. These param-
and Johnsor) has been normalized to 125, where eters represent a factor of 4 improvement on radial resolution
axre is the averaged ATF plasma radius. Hence, the regiomand nearly a factor of 10 on the number of Fourier compo-
0.6a<r<0.8a in the calculations models the region nents from previous calculatiods.
0.50,1r<r<aurr in ATF plasmas. We have limited the The coefficients of the perpendicular dissipation terms
nonlinear calculation to this plasma region because of comare assumed to be a function @f The functional form is
putational constraints. The averaged rotational transform anchosen to minimize the effect of the dissipation at lovand
V' profiles have been calculated from the ATF vacuum magto sharply increase at high. A convenient functional form
netic fields!® Plasma density and electron temperature profor our particular distribution of modes is Tdr{m
files have been chosen to fit the experimental ones in this-45)/15. At low m the coefficients of the dissipative terms
region. In Fig. 1, we have plotted the rotational transformare D, = u;, =u,, =5X10 %a?/7z, and they are aug-
the averaged curvature, and the normalized electron densityented by a factor of 100 in the high-range. In this way,
and temperature profiles used in the calculations. The densifgpr m<45, the linear growth rate of the main helicities is
and temperature profiles are flat withinr=0.5a, and the only weakly affected by the dissipation, but modes with
peak values correspond to the measured values at this loca45 have a reduced growth rate and for-60 they are

Ill. EQUILIBRIUM PARAMETERS AND LINEAR
STABILITY
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FIG. 4. Nonlinear evolution of the potential fluctuationrat 0.6€a for two

FIG. 2. The radial distribution of the Fourier components included in thefu” 3-D nonlinear calculations with 2500 and 4605 Fourier components,
nonlinear calculations. respectively

linearly stabilized(Fig. 3). We have a significant_ra_nge_ of tions were initialized with a random set of initial
stable modes (60m<110). The value for the dissipation g,qrations, the initial phase of the calculations shows some
terms is lower than any other calculation we have done f0jjitterences. However, the time-averaged quantities over the
resistive interchange t_urbulence. With this viscosity Ievel'nonlinear phase agree very well. This is also the case of the
the Reynolds numper IS a.bout><3LO4.. ) basic time scales. The largest size calculations were per-
Most of the diagnostics used in these_ calcula.tllons % rmed in parallel on the CRAY-MP C90 as part of the Spe-

based on flux surface averages of quadratic quantities, S”@?al Parallel ProcessingSPH program at the National En-

as the rms value of the fluctuation levels and the particle-ergy Research Supercomputer CentddERSQ. The
flux. In terms of the expansion given in E), they have the 10 jations have been made 98% parallel and an overlap of
generic form close to 14 processors is routinely achieved with aggregate

~ 1 speeds of about 5 Gflop/s.
(F8)=5 2 (FrnGnnt frndin)- (19)

m,n
T . IV. NONLINEAR NUMERICAL RESULTS
Because the dissipation is lofmigh Reynolds number

we test two different time stepping metho@second- and To begin the nonlinear calculations, we take a set of
third-order accuracy imt), and monitor the step size for random fluctuations with averaged level of the order of
error control. The basic tests are done for single helicityl0 *. That is, we use the expansion in E8) with Fourier
calculations to reduce the expense of the test. The secongomponents that are Gaussian functions .oEach compo-
order scheme is accurate enough. Convergence studies hawent peaks at the corresponding resonant sunfade(r)
been done by comparing two full 3-D nonlinear calculations=m/n] and each has an amplitude that is randomly deter-
with 2500 and 4605 Fourier components, respectively. Figmined to be between zero and 10 The fastest growing
ure 4 shows the nonlinear evolution of the potential fluctua-modes dominate the initial phase of the calculation, in which
tion atr=0.66 for both calculations. Since both calcula- the fluctuations grow at an approximately exponential rate.

2000 : : e — : 0.10 —— R
I —e— Y (7/5, r=0.694) [e{D?) /T = 0673
i —a - Y (32, r=0.666) 008 — - g \
1500 |- /\ = --e-- Y (11/10, r=0.783) ol
i ~ E
L[y \ Z 006
v 1000 [/ ] 2
I A ] '5":
o/l 2 004F
\ o
/ 3
500 |- ] T »
s Rl W8 \ 0.02 -
’ “re
0'..! t AT ORI B - I [ = L P I Lo v
0 10 20 230 40 50 60 70 80 0 0.005 0010 0015 0020 0025 0.030
m TIME (1)

FIG. 3. Linear growth rate of the modes in three helicities included in theFIG. 5. Nonlinear evolution of the density and electrostatic potential fluc-
nonlinear calculations. tuations.
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FIG. 6. The time-averaged density profile during the steady-state phase of . . . ) i

the calculation compared to the initial density profile. FIG. 8. The time-averaged poloidal flow profile. The radial position of the
singular surfaces with a lowest-mode such as<8 are indicated with
vertical bars.

After this initial phase, the density and electrostatic potential

fluctuations nonlinearly evolve to a saturated sid@g. 5). —10%al7s). As was shown by single helicity calculations

The averaged density profile is slightly changed by the U35 hen diamagnetic effects are includethe flow generated

silinear effects, but maintains a nonzero gradient. At the[ -
. . . .through Reynolds stress has a minimum at the resonance
main resonant surfaces, this change of the density profile

: : Surfaces. This structure seems to hold in the 3-D calcula-
causes a reduction of the linear growth rates by less than a . . . )
: o : ions, as is shown in Fig. 8. The radial scale of this flow
factor of 2. Therefore, the nonlinear saturation is dominate : : ;
: . structure is comparable to the radial correlation length of the

by the transfer of energy to damped highmodes, where it :
is dissipated. The time-averaged densi rofile durin thefluctuatlons.

P ' 9 v P 9 In the steady-state phase of the nonlinear evolution, to

steady-state phas_e_ 9f the cglculatpn is shown in Fig. 6 ar'galculate the radial correlation length of the fluctuations, we
compared to the initial density profile.

To characterize the nonlinear turbulent state, the rméirst.t_ime average the coherenggr, Ar,t) at different radial
. . positions,
fluctuation levels have been time averaged over the steady-
state phase. In Fig. 7, the rms electrostatic potential fluctua- (?(r,a,g,t)?(r—Ar,a,g,t))
tion level is shown. In the figure, the singular surfaces with (7(r 0.0.02) .
n<8 are indicated with vertical bars. The time-averaged s
fluctuation levels have profiles that increase toward the edgd,he radial correlation length\, , is the value ofAr corre-
reaching values close to 10%. They show radial structuresponding to thee~! value of the time-averaged coherence.
that are correlated with the resonant surfaces of the lowesfs a function of the radial position, the radial correlation
n modes'® A similar type of plot for the time-averaged po- length shows some structure that is related to the fow-
loidal flow is presented in Fig. 8. The averaged poloidal flowrational surfaces. This is shown in Fig. 9, where we have
level remains small because we have used a large viscosiplotted the radial correlation length of the electrostatic po-
for the m=0; the n=0 component of the flow & tential fluctuations. The density fluctuations correlation
length has a similar radial dependence, although its value is
about 12% larger. The correlation length at the position of

y(r,Ar,t)=

(12

0.10 T T T T
0.08 - 016 ——— 77— 1.6
S oosf [
o 0067 0.12
g, _ F
3 I ] I
o 0.04 - 1 -
= r 1 > 0.08
1 <
0.02 I
1 0.04 -
0 b P - N 'O WA PRI B I SPE PE P N P \ | 4
0.55 0.60 0.65 0.70 0.78 0.80
/3 0 b L : . 0
0.55 0.60 0.65 0.70 0.75 0.80
FIG. 7. Radial profile of the rms electrostatic potential fluctuation level, r/a

averaged over the steady-state phase of the calculation. The radial position
of the singular surfaces with a lowastmode such an<8 are indicated FIG. 9. Radial and poloidal correlation lengths of the potential fluctuations
with vertical bars. in the steady-state phase as a function of the radial position.
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FIG. 10. Radial correlation length and renormalized mode width of ther|G. 11. Time-averaged poloidal wave number spectrum of the electrostatic

potential fluctuations as a function of the radial position. potential and density fluctuations.
the rational surfaces is close to the characteristic radial width S am2[(D5 )2+ (D )?]
i H . 21 — y m,n m,n
of the linear eigenmode¥®y. From Ref. 7, the renormalized {m}= S [(DS )2+ (S )] (15
width is given byW~W,A Y8, where o mn mn

By time averaging{m?} over the steady-state phase of the

{ Bo Ter) [ —a dno) 12 calculation, we can evaluate the rms poloidal b
Wo=1]22 . Mo , W poloidal wave number
° 126" " T4(0) \ng(0) dr k,={m?Y%/r” For ATF edge parameters, its value varies
2] 2) 13 between 0.5 and 1.0 cmh. Then, we define as the poloidal
7(r) q_"fl} (13)  correlation length the inverse of the spectral-averaiggd
7(0)S mar and its radial dependence is shown in Fig. 9. The radial-

is the radial width of the linear eigenmode andis the averaged poloidal correlation length ,=0.0%, about
solution of the equation seven times the averaged radial correlation length. This value

corresponds to 1.7 cm for ATF parameters.

A= i In[ ﬂ P Te(r) [ —a %) o The frequency spectrum for potential and density fluc-
3w 2e% " T(0) | ng(0) dr tuations are similar. They peak at low frequencies and decay
r\4 (0)S)|2 > asw %2 We can calculate the decorrelation time, using
— 7 ~ZinA. (14) 5
am n(r) T - (16)
1 - T (0 =[0])]’
Here, L,=[(1/g)(dg/dr)]~". In these expressions, we use

as the density gradient the time-averaged gradient over th&here the square bracket indicates spectral averaging. The
nonlinear phase of the calculation and forthe value of the radial average of the potential fluctuation decorrelation time
spectral-averaged poloidal mode number that will be deis 7.~1.6X 10‘3751.
scribed later. In Fig. 10, we have plotted the renormalized To compare the results of the turbulence calculations
width as a function of the radius and compared it with thewith experimental fluctuation measurements, we use the
radial correlation length. The radial width tracks closely theATF fluctuation data discussed in Ref. 11. The fluctuation
radial structures of the correlation length. The radial averdata available includes the measurements by reflectofhetry
aged value of the radial correlation length of the electrostati@nd edge Langmuir probé$The result of the comparison is
potential fluctuations isA,=0.0076-0.00& and for the shown in Fig. 12. There is reasonable agreement between the
density fluctuations\, =0.0085+0.00%. For ATF param- model and the experimental data. However, the experimental
eters, these values correspondAio=0.26+0.13 cm for the fluctuation profiles seem to fall off faster with the radius
potential fluctuations and,=0.27+0.17 cm for the density toward the inside. Note that the drive is cut off beyond
fluctuations. rlaarr=0.98 in the calculation. Beyond this radius, some
The time-averaged poloidal wave number spectrunother drive is needed to explain the large level of
peaks at the lowest values of (Fig. 11). The power spec- fluctuations:? Note that the averaged radius in Fig. 12 is
trum of both density and potential fluctuations has a powenormalized toa,tr instead ofa=1.2%,7¢ .
dependence fom>10 with a decay index of- 3.57+0.03. Having calculated the fluctuation amplitude and cross-
The main difference with the spectra calculated in Ref. 9 icorrelation, it is possible to determine the effective diffusiv-
for that casew, =0. In the present calculatiom, #0 and ity by dividing the particle flux by the density gradient. The
the decay indexes are practically the same for density antkesult is shown in Fig. 13, together with the radial profile of
potential fluctuations. This is a consequence of the nearlthe particle flux. The averaged diffusivity over the radial

adiabatic behavior of the fluctuations. interval considered in these calculations i
We can calculate the poloidal correlation length from the=0.07%7%/ 7. Since the decorrelation time of the turbulence

spectral-averaged poloidal mode number is 7,~1.6x 10 373, the mixing length estimate for the dif-
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FIG. 12. A comparison between the results of the turbulence calculationg|G. 14. Nonlinear evolution of the particle flux. A 0.0204, the tran-
with experimental fluctuation measurements in the ATF. sition from the L- to the H-mode state is triggered.

fusivity is D~Af7.~0.024 */ 7, which is about a factor tained a similar H mode. Hence, using the present model, we
of 3 below the calculated diffusivity. This factor is consistent can have some idea of what kind of change in confinement
with previoug evaluations of the diffusivities using the mix- may be expected.

ing length approximation. This value corresponds to  Tq do a realistic simulation of the L—H transition would
0.1 nf/s, which is low compared with ATF confinement. The require coupling this turbulence model to the evolution of
reason for the low value of the diffusivity is the near- averaged profiles, including particle and energy sources,
adiabatic character of the fluctuations. The relative phase b%rying the power source, and waiting for a spontaneous
tween the density fluctuations and the radial fluctuating flowyransition. That requires carrying out the calculation over a
ap, is also plotted in Fig. 13. The cosine @f stays around  transport time scale. Such a long calculation is impossible
0.2 over the whole radius. with present computer capabilities for large-scale turbulence
calculations like the ones described in this paper. For the
V. TRANSITION TO A HIGH-CONFINEMENT REGIME resistive interchange model used in this paper, the simplest

) his ed bul del q way of causing a transition is by reducing the viscous drag in
Since this edge turbulence model seems to repro Uhe averaged poloidal flow equation, E§). Therefore, we

some of the fe.at.ures of'the ATF gtellarator edge fluctuati'orhse this approach to trigger a transition. Since we are inter-
and transport, it interesting to use it to explore the propertiesciaq in maximizing the effects on the confinement, we take
of the L—H transition in stellarators. The short operation timedown the viscosity by several orders of magnitude over all

Of. the ATF did n_ot allow an H-mode dlscharge_ to b? Ob'the radial extents of the calculation. The reason for reducing
tained. However, in recent years, stellarator configurations as

di lical I q del. M over such a large radial region is to find out the natural
Isparate as Compact Helical Ste ag%(t@HS) and Wendel- length scale of the shear flow in the improved confinement
stein 7 Advanced StellaratdgiV7-AS)“" have succeeded in

- : : mode and avoid the determination of the radial extent by the
obtaining H-mode discharges. The properties of the H modg;, ¢ the region of low viscosity

are similar in both devices. Therefore, we can assume that For the same calculation of Fig. 5, &t 0.0204r,, we
given adequate operation time, ATF would also have Obhave reduced the averaged poloidal flow damping fram

=10*r;' to u=10 473 *. The transition occurs very shortly
after the change i, after 7< 10 *rg, that is about 10Qs

025 for ATF parameters. If we plot the evolution of the particle
020k flux with time at a fixed radial position, the transition is
= : clearly identified(Fig. 14). In Fig. 14, the time-averaged flux
ﬂ\.\: 015 L over the H-mode phase is about a factor of 2 lower than the
= f flux in the L-mode phase. The reduction of the flux starts at
S o0} the edge but very quickly extends over most of the radial
Z r region(Fig. 15). The reduction shown in Fig. 14 is somewhat
X 005} misleading because the plot is at a fixed radius and there is
T 3 not the same level of reduction at all radial positions. Taking
or the radial average of the flux, the reduction is only about
o005t 27%. The main cause of the flux reduction is fluctuation

T S S S RN S, . . . . .
0.55 0.60 0.65 0.70 0.75 0.80 reduction(Fig. 16. The reduction in the fluctuation level is
v/ more pronounced at the outer region. The change of the fluc-
FIG. 13. Radial profile of the particle flux, the effective particle diffusivity, tuations is also clear by lOOkmg at the potentlal and denSIty

and the cosine of the relative phase between the density fluctuations and thilctuations contourérig. 17). We can see a reduction in the
radial fluctuating velocity. level and also on the characteristic scales of the fluctuations.
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FIG. 15. Radial profile of the averaged particle flux in the L- and the
H-mode states.

FIG. 17. Contours of the electrostatic potential and density fluctuations in
In the H-mode phase, there is also an increase in the avethe L- and H-mode phases.

aged edge density pedestal. The combination of flux reduc-

tion and increased density gradient leads to a 35% improve- ) ]
ment in the radial-averaged effective diffusivityig. 18. poloidal flow before the poloidal flow shear is large enough

The confinement improvement is relatively low, even into suppress the fluctuations, and only a partial reduction of

the limit of negligible poloidal flow damping. This is the the fluctuations is achieved. _ _
consequence of the structure of the Reynolds stress for resis- 1he radial correlation length of the potential fluctuations

tive interchange turbulence. The Reynolds stress has twk$Mains nearly unchanged in the H-mode regime, while the
terms2 One is proportional to the averaged poloidal flow density fluctuations radial correlation length is reduced. The

velocity, and the second one is proportional to its secondadial averaged value of the radial correlation length of the
derivative electrostatic potential fluctuations i&,=0.0075-0.004

and for the density fluctuationsd, =0.006+0.004. Those

19 —_— — changes are consistent with the small reduction on the diffu-

Tz (r®(Ve Vo)) lx=0=(V:U)lx=0 sivities. There is also little change on the poloidal wave num-
ber spectrum. There is no change in the spectral decay index.

d3(V,) The mean value of the poloidal mode number averaged in
=a(Vy)+B drZ (17 time and radius is 15 in the L-mode phase and changes to 18

in the H-mode phase. The decorrelation time is also reduced
where « and B are positive coefficients depending on thein the H-mode phase. Of course, to determine the proper
fluctuation amplitude and plasma parameters. Theerm  decorrelation time it has to be calculated in the plasma rest
leads to a dynamo instability and the generation of sheareﬁameé We find that a typical decorrelation time7g~1.0
flow. The B term is an effective turbulent viscosity that <10 °7g.
damps poloidal flow. In all these calculations, tBeterm In these calculations, the transition is characterized by a

quickly overtakes ther term, leading to a saturation of the sharp increase in the poloidal flow and poloidal flow shear
(Fig. 19. In the H-mode state, the radial oscillations in the
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FIG. 16. Radial profile of the rms electrostatic potential fluctuations in theFIG. 18. Radial profile of the effective particle diffusivity in the L- and the
L- and the H-mode states. H-mode states.
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state for two calculations with different initial conditions. One profile cor-
FIG. 19. Time evolution of the poloidal flow showing the fast increase at theresponds to the same calculation as in Fig. 19. For the other calculation, the
transition. singular surfaces associated with the minima of the poloidal flow are indi-
cated with vertical bars.

poloidal flow profile are about a factor of 25 larger than ) .
before the transitioriFig. 20. Also, the scale length of the ent. However, the pasm scale length of thg flow is similar t.o
oscillations has changed. In the L mode, the radial structureEl;1e first case considered. In these calculations, the wave-like

are correlated with many of the low-+esonances surfaces pattgrn of the polqidal flow is the resuIt_ of lowering th?
(n=<9). The characteristic scale length of the poloidal fIOW,poI0|daI flow damping over the whole radial extent. That is

A, , is of the order of the radial correlation length, which is Nt What can be expected in the experiment. The poloidal
basically the mode width. However, in the H mode, the ra-1°W damping has a radial dependence that is a function of
dial structure of the flow is simpler and only correlates with COllisionality. The region of the plasma in which the<B

a few of the very lowest resonant surface®1<3 in this flow would be 5|gn|f|c_antly nonzero will probak_JIy be limited
particular case The characteristic scale length of the poloi- to the near-ed_ge region. Hov_vever, to deter_mme th_at depen-
dal flow, A, is the distance between these surfaces, Whicﬁence from this type galculatlon would require the inclusion
is larger than the mode width. This distance is of the order oP| SOUrces and evolution over transport time scale.
Ay~[n(n+1)q’]"L, wheren is the lowest resonamt num- The radial flow structure obtained in the three-
ber in the region considered. In the present calculations, thidimensional(3-D) calculations is different from the results

characteristic radial scale only varies by about 50%. FOIth sing&e relicilty IZ'D cslcmfjlar:ions.lIr'ldthleﬂsingI.e f;)elic_:ity”cashe,
ATF parameters, this gives 0.9 emA,<1.7 cm. the radial scale length of the poloidal flow is basically the

There is a nonunique solution for the poloidal flow in the mode width. This can be seen in Fig. 22, where we have
H-mode regime. In Fig. 21, we compare the radial profile ofplotted the poloidal flow from the 3-D results and compared

the flow from Fig. 20 with the result from another calculation itwith the poI(_)idaI flow f_or tWC.) of_the maif‘ single helicities.
with different initial conditions. We have also indicated in . fluctuation reduction criterion that is commonly used

this figure the rational surfaces associated with the minima of! the analysis of experiments is a simplified version of the

the poloidal flow. We can see that these surfaces are OliffeIBlglan et al, criteriorf? in which the decorrelation time of

the turbulence is taken to be the inverse of the maximum
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FIG. 20. Radial profile of poloidal flow in the L- and the H-mode states. TheFIG. 22. Poloidal flow from the 3-D results and compared with the poloidal

singular surfaces associated with the minima of the H-mode poloidal flowflow obtained from the 2-D single helicity calculation for two of the main
profile are indicated with vertical bars. helicities.
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1.0 I T , T (2) The confinement improvement is relatively low, about
L2 30%, even in the limit of negligible collisional flow
damping. The effective turbulent viscosity component of
08 * e 7] the Reynolds stress quickly overcomes the dynamo in-
stability componenfEq. (17)], causing the saturation of
0.6 |- - the poloidal flow.
¢ (3) In the H mode, it has been found that the characteristic
radial scale length of the poloidal flow in the 3-D calcu-
lations is different from the single helicity results. In the
latter case, the basic scale length of the flow is the radial
02~ . correlation length of the fluctuations, while for the
H-mode solution the basic scale is the separation be-
0 I I I I tween the lowest resonant surfaces. This scale length
0 02 04 06 08 1.0 has not yet been considered in the analysis of edge tem-
s/t perature pedestals.
FIG. 23. Fluctuation reduction factor versus the normalized shearing rate fo(<4) The oversimplified version of the Biglari—Diamond—
all resonant surfaces, with lowestvalues less than or equal to 7. Terry criterion? comparing the shearing rate to the lin-
ear growth rate, is not quantitatively consistent with the
results of the numerical calculation. Therefore, caution
linear growth rate. We can compare this criterion with our  should be taken in using this form of the criterion for
results. To do so, we have chosen the radial position of the experimental tests of the shear flow suppression mecha-
lowestq resonant modes with<7 and calculated the maxi- nism.
mum linear growth ratey,, , for these helicities. The shear-

ing rate,ws, at the corresponding resonant surfaces has been Th_e possibilities of accessing a hlgh-cpnflnemen_t H
determined by mode in stellarator ECH discharges are very limited. Neither

toroidal flow norVp; effects can contribute to the buildup
A d(Vy) 18 and sustainment of the edge transport barrier, and the edge
_A_e dr - (18) collisionality is too high to have a jump between roots of the

In Fia. 23 the fluctuat duction factati electric field. This calculation shows that the poloidal shear
r:‘tr:g'l I\Amfle ctomtparel el _uihuall'on r% utc I?hn ;’Ild‘ { 'Ot. flow cannot by itself provide a high enough confinement
ot the ‘ocal fluctuation fevel in the H mode fo the Tluctua Ionimprovement. Therefore, some level of ion heating is prob-
level in the L mode¢ to the normalized shearing rate,

: - . ably required. We have to extend the present calculations to
ws/ vy - Although there is a qualitative correlation, the quan- y Teq P

LS . . ) investigate this possibility and to assess the following.
titative agreement is poor. This result should caution us on

the use of this oversimplifying form of the fluctuation reduc- (1) For a realistic neoclassical viscosity, the effectVop;
tion criterion. and V, shear combined in creating an edge transport
barrier.
(2) The change in the radial scale length of the electric field
whenVp; is included in the calculation.
Resistive interchange turbulence has been used to model
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