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A nonlinear frequency shift in dissipative trapped electron mode turbulence is shown to give rise to 
a relaxation oscillation in the saturated power density spectrum. A simple non-Markovian closure 
for the coupled evolution of ion momentum and electron density response is developed to describe 
the oscillations. From solutions of a nonlinear oscillator model based on the closure, it is found that 
the oscillation is driven by the growth rate, as modified by the amplitude-dependent frequency shift, 
with inertia provided by the memory of the growth rate of prior amplitudes. This memory arises 
from time-history integrals common to statistical closures. The memory associated with a finite time 
of energy transfer between coupled spectrum components does not sustain the oscillation in the 
simple model. Solutions of the model agree qualitatively with the time-dependent numerical 
solutions of the original dissipative trapped electron model, yielding oscillations with the proper 
phase relationship between the fluctuation energy and the frequency shift, the proper evolution of 
the wave number spectrum shape and particle flux, and a realistic period. © 1994 American 
Institute of Physics. 

I. INTRODUCTION 

The micro scale fluctuations of tokamak plasmas are gen­
erally regarded as stationary and treated as being driven by 
gradients that are time independent (Le., fixed or main­
tained). Turbulence driven by fixed gradients is typically pre­
sumed to have a growth rate that does not vary as the ampli­
tudes evolve from the linear phase into the nonlinear phase 
and saturation. This presumption is implicit in the mixing 
length, but, in fact, underlies more sophisticated treatments 
that explicitly calculate renormalized diffusivities. 1 The no­
tion of a fixed growth rate allows the fluctuation level to be 
obtained as the solution of an effectively linear equation for 
the RMS amplitude at which the fixed rate of energy input 
(growth rate2

) balances the amplitude-dependent rate of non­
linear spectral transfer. This balance is simplified by the fact 
that for a stationary state, the time-history integrals of statis­
tical closure theories can be Markovianized, yielding transfer 
rates that are instantaneous functions of the amplitude. Varia­
tions on this stationary balance are able to account for inco­
herent fluctuations and incoherent emission, but still treat the 
growth rate of normal modes as amplitude independent.3.4 In 
recent years, a number of turbulence models have been ex­
amined in which the growth rate is modified at finite ampli­
tude and in saturation, even when gradients remain fixed.5

-
7 

Saturation in these cases involves changes in the fluctuation 
structure that alter the rate of free energy extraction, but is 
still presumed to be stationary. 

In this paper we present an examination of plasma tur­
bulence that violates both the notion of a fixed growth rate 
(even in local theory, where the spatial eigenmode structure 
is not treated) and the assumption of stationarity of satura­
tion. The breakdown of these notions is rooted in universal 
but generally overlooked aspects of propagating plasma in-

')Present address: Oak Ridge National Laboratory, Oak Ridge, Tennessee 
37831. 

stabilities: the fact that the growth rate y depends on the 
oscillation frequency wr ' and that Wr tends to be modified at 
finite amplitude. The former is a well-known feature of drift 
waves, the growth rate being proportional to the difference of 
the diamagnetic frequency and the fluctuation frequency. Be­
cause the diamagnetic frequency typically exceeds the fluc­
tuation frequency, increases in the fluctuation frequency lead 
to decreases in the growth rate. Changes in the fluctuation 
frequency at finite amplitude are also a feature of drift wave 
and trapped particle mode turbulence.8-

12 The shifting of the 
fluctuation frequency at finite amplitude possibly arises from 
more than one nonlinear mechanism, and can be of sufficient 
magnitude to significantly modify the growth rate, saturation 
balance, and fluctuation level. Changes in the growth rate (or 
free-energy extraction rate) due to frequency shifts should 
thus be regarded as a potentially important aspect of satura­
tion, just as changes in the growth rate due to nonlinear 
modification of the fluctuation structure have been shown to 
alter saturation in nonlocal theory.5-7 

In this work, the role of nonlinear frequency shifts in the 
saturation of dissipative trapped electron mode turbulence is 
examined. From previous work, unstable dissipative trapped 
electron modes are known to experience a marked upshift in 
RMS frequency at finite amplitude, provided their wave 
numbers are in the spectral region, where both the EX Band 
polarization drift nonlinearities are operative. IO•

11 This shift 
is associated with triads that couple through both nonlineari­
ties via the standard statistical couplings that survive phase 
scrambling, and hence lead to closure. Numerical simulation 
of dissipative trapped electron mode turbulence has shown 
that the cross-coupling frequency shift leads to a saturated 
state that is intrinsically nonstationary.13.14 Specifically, the 
saturated state is characterized by large-amplitude, long pe­
riod relaxation oscillations in the total fluctuation energy, 
power density spectrum, and particle flux. Such oscillations 
cannot be described by steady-state balances and violate the 
Markovian reduction that applies to the steady state. 
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In the present work we explore the plausibility of a 
hypothesis l3 for the basic relaxation oscillation as a cycle in 
which (1) frequency shifts are generated in unstable modes 
as the RMS amplitUde nears the saturation level; (2) the re­
duction in growth rate caused by the frequency shifts puts 
the modes in an over-saturated state, and their amplitude falls 
to a lower level compatible with the reduced growth; and (3) 
at the lower level the frequency shifts are now smaller and 
the growth rate increases. This puts the modes in an under­
saturated condition and their amplitude must increase, re­
starting the cycle. A key issue is identification of the physical 
mechanism providing the effective inertia necessary to pre­
vent the restoring force from simply forcing the saturation to 
a lower stationary level. 

In order to test the validity of the above hypothesis, .a 
model for dissipative trapped electron mode turbulence is 
adopted that allows for analytic treatment that properly de­
scribes the feedback of frequency shifts on the growth rate 
and on the dynamics of saturation. This model combines the 
equations for electron density response and the ion momen­
tum to form an equation that is nominally second order in 
time. However, as noted in Ref. 15, a two time scale treat­
ment of the equation must be used in order for the electron 
density to remain a response to the potential. In Ref. 15, the 
model was solved numerically in the context of coherent 
structure dynamics; here, an analytic treatment is developed 
to describe the relaxation oscillation phenomenon. The two 
time scale procedure places particular constraints on the clo­
sure and its solution and ultimately yields coupled equations 
for the spectrum evolution and the amplitude-dependent 
growth rate, as detailed in Secs. III and IV. 

The salient elements of this study are now summarized. 
(i) The model and solution procedure yield a relatively 

simple description of the nonlinear dynamics of the cross­
correlation of density and potential (particle flux), a long­
standing problem in drift wave physics. The cross-correlation 
dynamics are lost in so-called Hi 8" approximations,8-9,lI 
and are governed by complicated expressions in renormal­
ized theories of the cross-correlation.1 6-17 Here they emerge 
from the solution of the equation that governs the temporal 
evolution of the amplitude-dependent growth rate normal­
ized to the shifted frequency. Because the growth rate is 
governed by amplitUdes at prior times, the oscillation of the 
particle flux lags behind the amplitude oscillation by a cor­
relation time. 

(ii) The frequency shift induced by the cross-coupling 
of the EX B and polarization drift nonlinearities itself de­
pends on the frequency, a fact overlooked in previous 
analyses. IO,1I From the renormalization, this dependence is 
found to reduce the frequency shift, causing it to saturate as 
the fluctuation level increases. The maximum possible fre­
quency shift occurs as the amplitude tends to infinity and 
makes unstable modes become marginally stable. Thus, it is 
not possible to make a growing mode become damped, and 
vice versa. These results are consistent with the fact that a 
marked increase in the frequency shift is observed in simu­
lations when the frequency dependence is excluded. 

(iii) A set of saturation relations is derived that describes 
nonstationary saturation and is amenable to approximate so-
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lutions and modeling. This set of equations is derived from 
the Direct Interaction Approximation (DIA) , 18 which in its 
standard form is poorly suited for simple representation of 
the present problem, because it is analytically intractable and 
yields the growth rate only upon solution of the nonlinear 
response function equation. Because the period of the relax­
ation oscillation is only somewhat longer than the correlation 
time, the time history effects of the closure must be retained. 
These arise because each member of an interacting triad is 
governed by the time integrated effect of its interaction with 
other modes during the previous correlation time. The two 
time scale solution of the response function equation and an 
expansion of the time history integral yield an evolution 
equation for the growth rate that is driven by the difference 
of the actual growth rate and the instantaneous or Markovian 
growth rate. 

(iv) The nonstationary saturation relations are readily 
reduced to a nonlinear oscillator or extended predator-prey 
model. This is accomplished by partitioning the spectrum 
into discrete ranges and evolving the energy in each range. 
This system is to the nonstationary saturation relations what 
the mixing length is to stationary saturation. The system re­
duces to the mixing length identity under the assumption of 
stationarity, satisfies the energy conservation constraints of 
the original closure equations, and incorporates the effects of 
time history in the growth rate evolution. 

(v) With the extended predator-prey system, it is pos­
sible to explore the question of what physical process pro­
duces the effective inertia required to maintain the relaxation 
oscillation. Two mechanisms are examined. One is the inertia 
associated with the finite time of transfer of energy among 
spectrum components. This mechanism is manifested in the 
coupling of components, with each driven by a first-order 
equation. This coupling constitutes a form of memory, inas­
much as formal inversion of one evolution equation and sub­
stitution in the others produces time-history integrals in the 
coupling coefficients. 19 The second mechanism is that of the 
memory associated with the statistical closure and manifests 
itself as the drive of the growth rate evolution. Removing the 
latter produces stable fixed point solutions in systems with 
two or three spectrum components. Including it yields limit 
cycle solutions. This indicates that the memory of the growth 
rate of prior amplitudes, through the time-history integrals of 
the closure, is the effective inertia, not the finite time of 
transfer in the spectrum. 

From numerical solutions of the oscillator model, the 
basic qualitative properties of the relaxation oscillation ob­
served in numerical solutions of the primitive equations are 
recovered. These include the correct temporal correlation or 
phase between the oscillations of the fluctuation energy and 
the frequency shift, the correct evolution of the wave number 
spectrum shape, as manifested in the phase of oscillations of 
the amplitude of various wave number bands, and realistic 
oscillation periods. The amplitude tends to be slightly larger 
than values observed in simulation of the basic equations, 
and may be due to the fact that the entire spectrum is being 
represented by only two or three modes in the oscillator 
model. The oscillator model shows that the relaxation oscil­
lations make a transition to a fixed point (stationary solution) 
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when the response of the frequency shift to a change in am­
plitude is more rapid than a nonlinear correlation time. This 
demonstrates the fact that non-Markovian elements of the 
turbulent interaction are essential to the relaxation oscillation 
phenomenon and provides a clear example of a failure of 
Markovian assumptions. 

This paper is organized as follows: in Sec. IT the model 
equations are presented and their properties are discussed. To 
simplify analysis and avoid the difficulties posed by cross­
correlations, a second-order (in time) one-field model is used 
instead of a two-field model. In Sec. III we present the deri­
vation of the renormalized equations, frequency shift, and 
frequency shift modified growth rate. An expansion of the 
time history integrals arising from the closure is introduced 
in Sec. IV. In Sec. V we detail several nonlinear oscillator 
models derived from the saturation equations and present 
numerical solutions. Section VI gives the conclusions. 

II. MODEL AND PROPERTIES 

Trapped electron modes can be described by fluid equa­
tions governing the evolution of the trapped electron density 
and a neutralizing ion density. Quasineutrality with the full 
electron density, including adiabatic electrons, provides a 
closed system: 

an.. a4> a4> at- CSPs V¢xz.Vn e+Veffne=-Tt- VD(1+a17e) ay' 

ani 2 2 a4> 
--C P VA..Xz·Vn·-p V -at s S <P I S at 

and 

(1) 

(2) 

(3) 

where ne and ni are the trapped electron and ion densities, 
normalized to the mean density, ¢ is the potential, normal­
ized to Tele, VD =(cTeleB)L;; I is the diamagnetic drift ve­
locity, Cs =(T/m;)112 is the ion sound speed, 
ps=(cT/eB)/Cs is the ion gyroradius evaluated at the elec­
tron temperature, 7Je = d In Te1d In ne is the ratio of the elec­
tron density and temperature gradient scale lengths, 
Veff= V / E, a= ~ represents the magnitude of the thermal 
component of equilibrium gradients in the diamagnetic drift, 
and E

I12 =(rIR)1I2 is the trapped electron fraction. 
These equations provide a minimal model of the physics 

of trapped electron mode turbulence. Their basic properties 
have been discussed in Refs. 13 and 20, and will not be 
repeated here. For the dissipative trapped electron regime, 
the nonadiabatic electron density is effectively laminar, Le., 
the electron inertia dneldt, which includes the electron non­
linearity, is small compared to the collisional dissipation 
veff'! e' The nonadiabatic electron density is therefore given 
by 

(4) 
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and the growth rate, which goes as the Fourier transform of 
this expression, is proportional to w- w*( 1+ a17e), where 
w * = V Dky. The dependence on w comes from the inertia of 
adiabatic electrons and provides the link between frequency 
and growth rate. Since the linear frequency is close to w* 
there is partial cancellation between wand w*( 1 + a17e), and 
nonlinear frequency shifts of order w* can have a significant 
effect on the growth rate. 

A one-field equation for the dissipative regime is ob­
tained by using Eq. (3) to eliminate ni in Eq. (2), and sub­
stituting for ne from Eq. (4) to yield 

a4> 2 2 a4> JE a a4> JE a2¢ 
Tt- Ps V Tt- Veff ( I + a7}e) V D at ay - Veff --;Ji2 

(5) 

As noted in Ref. 15, equations of this type are nominally 
second order in time, but must be solved perturbatively with 
terms proportional to wlveff treated in higher order. Since the 
highest time derivative is O(w/veff), the lowest-order solution 
is effectively first order in time. This properly maintains the 
electron equation as a response to the potential and identifies 
the physical root of the dispersion relation as the nonsingular 
root (in the limit wlverO). Solving the dispersion relation 
for this root yields 

(6) 

The lowest-order dispersion yields the real frequency, Eq. 
(6), and the next order yields the growth rate, Eq. (7). As 
indicated, the growth rate is proportional to 
w- w*( 1 + a17e)' In linear theory, w is given by Eq. (6), 
yielding Eq. (7); at or near saturation, Eq. (6) will be modi­
fied by the addition of an amplitude-dependent frequency, 
leading to changes in the growth rate. 

The presence of the EX B nonlinearity [the last term on 
the left-hand side of Eq. (5)] in a one-field evolution model 
implies that energy is the only quadratic quantity held invari­
ant by the nonlinear transfer dynamics.8

,11 Although energy 
is conserved by the nonlinear transfer dynamics, it is by no 
means a constant in the saturated state. In simpler models 
that neglect the adiabatic electron inertia,8.Il energy is a con­
stant, because the linear growth rate is fixed and the transfer 
rate is a conservative, monotonic function of amplitude. By 
contrast, in the present model, the saturation energy need not 
be a constant. This is because frequency shifts can modify 
the growth rate or rate of energy injection into the modes. 
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III. RENORMALIZED SATURATION BALANCE 

The saturated state of dissipative trapped electron mode 
turbulence can be accurately described using the standard 
statistical ansatz of closure theory,21 i.e., the assumption that 
the fourth-order cumulant is negligible. However, a number 
of additional simplifying assumptions are often introduced 
into closure equations. These assumptions reduce compli­
cated closures, such as the DIA,18 to a form more conducive 
to analytic solution of the saturation balance and spectrum 
balance equations. The two primary assumptions are the 
Markovian approximation of the time history integrals that 
appear in renormalized diffusivities, and representation of 
the nonlinear response function of the turbulent medium as 
an exponential decay with a self-similar eddy diffusivity. 
These are the basis of the widely used Eddy Damped Qua­
siNormal Markovian (EDQNM) closure?! 

It is not possible to describe the relaxation oscillation 
phenomenon with EDQNM closures. The equation for the 
nonlinear response function must be obtained and solved in 
order to correctly determine the nonlinearly modified growth 
rate, and time history effects must be retained in the expres­
sion for the growth rate. In this and the following section, a 
procedure is introduced that effectively allows an eddy 
damping representation, but retains the time history effects. 
This procedure yields an evolution equation for the nonlin­
early modified growth rate; which is combined with the spec­
trum evolution equation (driven by the nonlinearly modified 
growth rate) to describe saturation. These equations readily 
lend themselves to the construction of the extended 
predator-prey system used in Sec. V to model saturation. 

The standard iterative closure procedure is applied to the 
Fourier transformation of Eq. (5) and the energy evolution 
equation [constructed by multiplying the Fourier transforma­
tion of Eq. (5) by o/t and taking the real part], to yield 

[ 
• 2 2 ..j€ 

Lko/k= IW(l+gk+k ps)+-w[w-(1+aTJe)W*] 
lie 

- iw* + Ynlk) - i(l + aTJe)w*gk) o/k=O, (8) 

for the response function, and 

-Re[iwnl(w,k)]}Io/kj2_2 Re L;IL (jX;~fj2 
k' ' 

+ jXr.'~,j2) j o/k'j2j o/k_k,j2= 0, (9) 

for the spectrum evolution equation. Here, Ynl(k) is the co­
herent eddy damping rate, given by 
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(10) 

gk is the amplitude factor associated with the cross-coupling 
frequency shift, 

gk= L (k' XZ.k)2Lk_k,1 -2
1 C;p; ..j€ (k2-2kl)jo/k,j2; 

k' lie 

(11) 
(EXB) d (pol) . 

Xk,k' an Xk,k' are the couphng strengths of the EXB and 
polarization drift nonlinearities, 

(EXB) • CsPsJ€ (k' k)[' , 
Xk,k' = t ~ Xz· W - (1 + aTJe)w* 

e 

-(w-w')+(1+aTJe)w~], (12) 

C p3 
X~~~=T (k'xz·k)[(k.L _k~)2_k2]. (13) 

In these expressions, the subscript k represents the four­
vector comprised of the three spatial components of the wave 
number and frequency w. Likewise, the summations over k 
include an integral over w. In Eqs. (10) and (12), w~ 
= VDk;andw~ = VD(ky - k;). In writing the coherent eddy 
damping rate, it has been assumed that the eddy damping for 
the long-wavelength unstable modes is of primary interest. In 
this case w~w', yielding a damping rate that is independent 
of the frequency w. 

The two terms in Eq. (8) proportional to gk constitute the 
nonlinear frequency shift, 

(14) 

The form of the frequency shift reflects an assumption that 
the frequency spectrum is peaked about a frequency that has 
an odd parity in k. Specifically, if w=w*(k)+wnl(k) with 
wnl(k) an odd parity function, contributions to the frequency 
shift that are proportional to w' and w ~ vanish upon summa­
tion over k' and integration over w'. The frequency shift 
amplitude function, Eq. (11), is a product of the coupling 
strengths for the EX B and polarization drift nonlinearities, 
and thus is weighted to high wave number modes (relative to 
the unstable modes). The frequency shift differs from previ­
ous forms10,11 because of the w dependence, an effect arising 
from the contribution of adiabatic electron inertia to the 
EXB nonlinearity. Without the w term, wnl is proportional to 
the amplitude (assuming a strong turbulence regime, where 
Lex 0/ ). In this case, the magnitUde of the frequency shift is 
limited only by the fluctuation amplitude. On the other hand, 
with w included, the frequency shift is proportional to 
w- (1 + arle)w* ' the same factor appearing in the growth 
rate, Eq. (7). As the nonlinearly shifted frequency approaches 
the magnitude required to stabilize a mode, the shift there­
fore weakens and approaches zero. Consequently, 
w=(l+aTJe)w* or wnl=aTJew* represents the highest 
possible frequency that can be achieved, even if the fluctua­
tion level is arbitrarily large. Likewise, the cross-coupling 
frequency shift cannot stabilize an unstable mode or destabi­
lize a stable mode. Rather, the largest possible frequency 
shift makes an unstable (or stable) mode marginally stable. 
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Equations (8) and (9) form a coupled system whose so­
lution yields the nonlinearly modified growth rate and fluc­
tuation spectrum. When Fourier transformed back into the 
time domain, these quantities fluctuate in time as part of the 
nonlinear relaxation oscillation phenomenon observed in 
simulations. As is normally the case, the response function 
equation, Eq. (8), provides the nonlinear decorrelation time 
that limits the nonlinear interactions that produce the spectral 
transfer. Here, it also yields the amplitude-dependent growth 
rate. The spectrum evolution equation, Eq. (9), describes the 
evolution of spectral components of energy under the influ­
ence of the growth rate, contained in the three parts of the 
first term, coherent eddy damping, represented by the second 
term, and incoherent emission, the last term. Equation (9) 
describes conservative energy transfer in wave number 
space. Specifically, the incoherent emission cancels the co­
herent spectral transfer when the equation is summed over k. 
The growth rate terms do not vanish; they represent the non­
zero rate of energy input (positive or negative, depending on 
the wave number). Because this term depends on amplitude 
through the nonlinear frequency shift, it describes a non­
energy-conserving nonlinear process quite distinct from the 
energy conserving spectral transfer of the second and third 
terms. 

To consistently recover the correct amplitude-dependent 
growth rate and its effect on the spectrum evolution, these 
equations must be solved perturbatively for w/veff<{l, as pre­
viously noted. This ordering also separates evolution on the 
rapid time scale of the mode coupling interactions and the 
longer time scale of the relaxation oscillations. These time 
scales are denoted by w(O) and w(l), for the rapid and slow 
time scales, respectively. 

As an energy balance equation, the spectrum evolution 
equation is phase averaged. Consequently, the lowest-order 
physically meaningful balance occurs at one order higher 
than the lowest-order balance of the response function equa­
tion. In its lowest order, the spectrum evolution equation can 
be written as 

( (1 + k2 p;) :t + ~: Re w(O)[Re w(O) - (1 + a7]e) w*] 

_ ~E (1m W(0»2) lcf>kI 2 + 'Ynl(w(0),k)lcf>kI 2 

ve 

=0, (15) 

where w(I) has been transformed to the time domain. and the 
frequency dependence of L and X is evaluated at w= w(O). 
Here a/ at represents the slow time scale variation of the 
spectrum, as driven by small imbalances in the spectral terms 
as they evolve on the long time scale. The second and third 
terms in the square brackets yield the amplitude-dependent 
growth rate, with w(O) supplied from the lowest-order solu­
tion of the response function equation. The coherent damp­
ing and incoherent emission rates vary on the long time scale 
through their dependence on amplitude. 
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FIG. I. The growth rate as a function of the amplitude factor {;k • For ge= 0, 
the growth rate reduces to the linear value, while for gk-+ oo , the growth rate 
goes to zero. 

To lowest order in wi lie' the response function yields 

(0) w* + (1 + a7]e)W*gk 
w 1 + l: +k2 Z ' 

!:ok Ps 
(16) 

where it is assumed that the saturation amplitude is suffi­
ciently large to make the frequency shift of order w*. Both 
'Ynl and the growth rate, U€/lIe)w[w-(I+a7]e)w*] enter 
in the next order. Note that for gk arbitrarily large (large 
amplitude), w(O)-( 1 + a7]e)w*. This is precisely the fre­
quency that renders infinitesimal amplitude growing modes 
marginally stable at large amplitude. Using Eq. (16) to evalu­
ate the growth rate terms in Eq. (IS), the spectrum evolution 
equation becomes 

((l+k 2p;) :t+'Y(t)+'Ynl)lcf>kI2-2 ReLk"lf, (IX~:k~B)12 

+ Ix~~~)12) I cf>k,1 21 cf>k_k,1 2 = 0, (17) 

where 

(18) 

and git) is given by the temporal Fourier transform of Eq. 
(11). Equation (18) is the amplitude-dependent growth rate. 
Comparison with the linear growth rate, Eq. (7), indicates 
that this expression reduces to the linear growth rate when 
the fluctuation level goes to zero, and asymptotes to zero 
when the fluctuation level goes to infinity. The growth rate is 
plotted in Fig. 1 as a function of gk' For saturation levels 
consistent with mixing length values and 7]e slightly larger 
than unity, the growth rate tends to be reduced by as much as 
50% at saturation relative to its magnitude at infinitesimal 
amplitude. In this region, the growth rate decreases strongly 
with amplitude. For TJe> ~(= a-I), the growth rate increases 
as gk increases from zero, peaking in the range ~< gk < 1 (for 
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k2 
p2 = 0), and then decays to zero for higher values. For 

7]e~~' the maximum growth rate is at zero amplitude 
(gk=O). 

IV. TIME HISTORY EXPANSION 

It is tempting to regard the amplitude-dependent growth 
rate, coherent damping rate, and incoherent emission rates as 
being determined by the appropriate spectrum-averaged am­
plitude at the same instant in time. In fact, all amplitude­
dependent rates in turbulence have memory, sensing the prior 
amplitude history over the time period for which the phases 
of interacting triplets remain coherent. This memory is a 
natural consequence of the nonlinear coupling process: time 
derivatives of wave number spectrum amplitudes are driven 
by beating with other modes that are evolving under the 
same coupling process. Because the time derivative is a dif­
ference in amplitude over time, amplitudes at prior times 
directly affect the evolution of wave number spectrum am­
plitudes. 

Time history effects enter in nonlinear rates through the 
inverse response function L - 1 • In the time domain, this func­
tion is replaced by a time integral over all the time­
dependent functions to its right, multiplied by the temporal 
Green's function or propagator associated with the response 
function. As noted in the previous section, the response func­
tion evolves on the faster eddy turnover scale, whereas the 
spectrum evolves on the slower time scale of the relaxation 
oscillation. This provides a rationale for the canonical Mar­
kovian assumption that is introduced in common eddy damp­
ing closures (EDQNM), wherein the spectrum is removed 
from the time history integral, and the propagator is inte­
grated to obtain a mean correlation time. However, it is es­
sential to retain time history effects if description of the 
slower time scale evolution of the spectrum is desired, be it 
the transient approach to a conventional stationary spectrum, 
or the nonstationary relaxation oscillation of dissipative 
trapped electron mode saturation. 

The object of this section is to represent the memory 
effects in the growth rate y(t) through its dependence on gk' 
consistent with the two time scale ordering previously intro­
duced. This representation yields the growth rate as the so­
lution of a first-order (in time) differential equation driven by 
the difference between the actual growth rate and the Mar­
kovian growth rate. The derivation of this equation is heuris­
tic, based essentially on dimensional scaling analysis. There­
fore it produces only approximate spectrum-averaged rates 
for each time scale. 

In terms of its slower time scale variation, the growth 
rate of the spectrum evolution equation is given by Eq. (18), 
where gk(t) is a function of the slowly varying time, ob­
tained from the Fourier transformation of Eq. (11). Thus 

gk(t) = ~ Ildt , Ck,k,Gk- k,(t,t')Icf>k,(t')I2, (19) 
k' 

where 
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(20) 

Gk-k'(t,t') is the propagator of the slow time part of the 
response function operator, 

(; (1 + g~l» + y(t) + Ynl(t) - i( 1 + a7]e)W*~V») 
XGk(t,t')= 8(t-t'), (21) 

and gk') represents the contribution of gk to the slow time 
scale propagator. The propagator is written as an eddy damp­
ing eikonal, 

(22) 

where Tk is the eigenfrequency of the operator of Eq. (21). 
Taking the time derivative of gk(t) yields an expression 

for gk(t) in terms of its Markovian form and corrections of 
higher order in the two time scale expansion: 

x fdt' Ck,k,Gk-k,(t,t')Icf>k,(t'W 

=CIcf>(t)l2-T- 1gk(t), (23) 

where the quantities to the right of the last equality are spec­
trum averaged, and therefore wave number subscripts are 
dropped. Multiplying this expression by the spectrum aver­
aged decorrelation time T, the right-hand side is recognized 
as the difference between the standard Markovian form of 
~k(t) and ~k(t) itself. Thus, ~k(t) can be written as its Mar­
kovian form, and a non-Markovian correction given in terms 
of the derivative of ~k(t), 

(24) 

As long as the cycle time is long compared to the decorrela­
tion time, T[dgkldt]/CIcf>(t)12T=O(77'TcYcle)~1, and this 
correlation is small. 

With Eq. (24), it is now possible to expand the growth 
rate y(t) about the Markovian ~k' Substituting Eq. (24) into 
Eq. (18), and keeping terms up to order T dgkldt, the growth 
rate is written as 

y(t)= Ym(t) 

(-lEI Veff) W~[ a7]e + (1 + a7]e)k2 p;] T(d gk I dt) 

+ [1 +ep;+CIcf>(t)i2TF 

(
2[1 +(1 + a7]e)CIcf>(t)i2T] ) 

X [1+ep;+clcf>(t)l2T] (l+a7]e) ' 

(25) 

where 
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(v'€IVeff)W![ a'1]e+ (1 + a'1]e)k2p;][ 1 + (1 + a'1]e)CI <fJ(t)l2r] 
Ym(t) = [1+k2p;+CI<fJ(tWTf 

(26) 

is the Markovian growth rate. Equation (25) may be greatly 
simplified by utilizing the fact that dl;k1dt can be written in 
terms of d yl d t, making the non-Markovian part of the 
growth rate proportional to dyldt. Taking the derivative of 
Eq. (I8) and comparing with Eq. (25), the growth rate ex­
pression can be rewritten as 

(27) 

This expression is similar to Eq. (24), and indicates that the 
actual growth rate is the Markovian growth rate plus a non­
Markovian correction proportional to dyldt. Note that yvar­
ies on the time scale of the relaxation oscillation, making the 
non-Markovian correction small, as long as the relaxation 
oscillation time scale is long compared to T. Equation (27) is 
a differential equation whose solution yields the slowly 
evolving growth rate. As indicated earlier, slow time scale 
variation of the growth rate is driven by the difference be­
tween the actual growth rate and its Markovian value. As 
might be expected, solutions of Eq. (27) indicate that the 
cycle of the actual growth rate lags behind the cycle of the 
Markovian growth rate by a correlation time. 

The solution of Eq. (27) is closely related to the electron 
particle flux, or correlation of electron density with the radial 
flow velocity. Using Eq. (4) to express ne as a function of <p, 

f=':' (n a<fJ) 
B e ay 

=- B:eff ((~~ +(1+a'1]e)VD ~:) ~~). (28) 

Fourier transforming and evaluating the lowest-order contri­
bution using Eq. (16), the electron particle flux becomes 

(29) 

where 

(30) 

Because the particle flux is proportional to the normalized 
growth rate Yk(t), it depends on I;k' and is therefore subject 
to the same time history process that affects the growth rate. 
Expanding the normalized growth rate about its Markovian 
value using Eq. (24), and re-expressing dl;k1dt in terms of 
d':'fk{t)ldt, it is found that the normalized growth rate is 
driven by the difference of Markovian and actual values, just 
as is the growth rate: 

(31) 

where 
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(32) 

Equations (29), (31), and (32), which together determine the 
electron particle flux, express the fact that the particle flux is 
nonstationary for dissipative trapped electron mode turbu­
lence. Moreover, as shown in the next section, because the 
normalized growth rate lags behind its Markovian value, the 
variations of YmU) and I <Pk(t)!2 tend to constructively inter­
fere, making the excursions of the particle flux more extreme 
than those of the energy. 

Memory also affects the coherent eddy damping and in­
coherent emission rates. Expanding the eddy damping rate 
Yn/(t) and the incoherent emission source Sin 
- 2 R L-l~ (I (EXB)12 1 (pol)1 2) I "" 121"" 12 . - e k kik' XU' + Xk,k! 'f'k' 'f'k-k' about theIr 
Markovian values, the long time variation of these rates can 
also be described by differential equations like Eqs. (27) and 
(31), i.e., dYn/dt=(y~t>-ynl)T-l, and dSinldt = (S[;:') 
- Sin) T- 1, where y~l) and sl;:') are the Markovian eddy 
damping rate and incoherent emission source. Description of 
slow time scale nonstationary behavior in the saturation of 
dissipative trapped electron mode turbulence nominally re­
quires the differential equations for all three nonlinear rates 
(the amplitude-dependent growth rate, the coherent eddy 
damping rate, and the incoherent emission source), as well as 
the spectrum evolution equation. As will be demonstrated in 
the next section, relaxation oscillation solutions are possible 
with a reduced description, which assumes a Markovian 
eddy damping rate and incoherent emission rate, but retains 
memory effects in the amplitude-dependent growth rate. The 
makeup of this reduced description indicates that the essen­
tial physics required for relaxation oscillations is that of the 
finite-amplitude growth rate and its memory. Because the 
growth rate is weaker at large amplitude than it is at small 
amplitude, it produces a restoring force for amplitude pertur­
bations. The memory in the growth rate then provides the 
necessary inertia. to sustain an oscillation. Physically, when 
the energy is displaced below its nominal level of saturation, 
the increased growth rate drives it back toward the saturation 
level. However, when the energy reaches the saturation level, 
memory maintains the growth rate above itseq)liIibrium 
(saturation) value, thus driving the energy above the satura­
tion level. 

v. NONLINEAR OSCILLATOR MODELS 

The complexity of the saturation balance relationships 
[Eqs. (17), (26), and (27)] generally precludes simple steady­
state solutions, such as the mixing length. It is nonetheless 
desirable to extract from these relationships an idea as to 
how the amplitude-dependent growth rate and memory ef­
fects interact,. and what types of dynamical behavior result. 
To this end, solutions of the saturation balance relationships 
are modeled by reduction to a low-order system of coupled 
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oscillators. This is not a reduction to a discrete triplet of 
interacting modes within the spectrum, but rather represents 
the coupled energies in bands of wave numbers spanning the 
spectrum. The simplest model divides the spectrum into low 
and high wave number components and retains memory ef­
fects in the amplitude-dependent growth rate. Transfer be­
tween the wave number components has incoherent emission 
and coherent eddy damping elements and is conservative, 
consistent with Eq. (17). While this reduction is crude, par­
ticularly in the grossness of its spectral resolution, it appears 
to capture the essential workings of the relaxation oscillation, 
as observed in simulations. 

In using low-order nonlinear oscillator models to repre­
sent the dynamical behavior of high-order systems, the ef­
fects of spectral resolution (or the number of degrees of free­
dom) is not the only issue affecting their utility. Solutions of 
low-order nonlinear oscillator models can be sensitive to 
small variations in the form of the nonlinearities. Reasonable 
agreement with simulations might thus be as much a matter 
of fortuitous choice of the form of the oscillator equations as 
it is an indication that the oscillator model has captured the 
essential workings of the full saturation balance equations. In 
the present case the nonlinearities are constrained to repre­
sent coherent damping and incoherent emission, thus giving 
them a specific form. Additionally, they must conserve en­
ergy. These constraints largely fix the from of the oscillator 
model and exclude many other possibilities for coupled spec­
trum ranges. 

There is, however, ambiguity in the form of the correla­
tion time T that enters the coupling coefficients and growth 
rate equation. This time is a function of frequencies, growth 
rates, and the amplitudes of nonresolved triplets, and there­
fore does not generally project directly onto a two­
component spectrum modeL The form used here is appropri­
ate for weak or moderate turbulence, i.e., the transfer rates 
are proportional to the square of the fluctuation amplitude. In 
this regime, the correlation time is not a strong function of 
amplitude, and it can be realistically and unambiguously 
modeled, even when the spectrum is projected onto a few 
components. In contrast, in the strong turbulence regime, the 
projection onto a few components is problematic. This is 
because the correlation time depends on amplitudes, and the 
dependence enters as a sum over the spectrum. If spectrum 
components evolve cyclically, as occurs in the relaxation os­
cillations, the sum averages over phases. In the few compo­
nent projection, however, the correlation time has a strong 
and physically unrealistic dependence on the oscillation 
phases of individual spectrum components. As shown below, 
this results in relaxation oscillation behavior in the two com­
ponent model for strong turbulence, even when there is no 
amplitude dependence in the growth rate and no memory. In 
this case, the nonlinear oscillator model does not provide an 
accurate representation of the dynamics of a many compo­
nent spectrum, because relaxation oscillations are not ob­
served in simulations when the amplitude dependence of the 
growth rate is removed by suppressing the frequency shift. 

Labeling the low and high k spectral components of en­
ergy as A and B, respectively, (A = f: 1 dki4>ki 2

, B 
o 

Phys. Plasmas, Vol. 1, No. 12, December 1994 

= J~2 dk/'h/2, where kO < k 1 < kz are the lowest, the mean, and 
I 

the highest wave numbers of the spectrum), this model is 
given by 

(33) 

(34) 

(35) 

where al' f31' f32' fL, B 0, B 1 , and 8 are constants. Equations 
(33)-(35) represent the dynamically evolving balance of 
growth rate, coherent eddy damping, and incoherent emis­
sion. In the equation for the long-wavelength component of 
energy, al and f3z represent coherent eddy damping, while f3l 

represents incoherent emission. The coefficient f3, is gener­
ally taken to be much smaller than al' an ordering that typi­
fies transfer in the long-wavelength regime, where energy is 
carried dominantly to shorter wavelengths from the unstable 
modes. The constant fL is the rate of dissipation at short 
wavelength. The function 'Yo( 1 + B / B ,) ( 1 + B / B 0) - 2 is the 
Markovian growth rate, with 'Yo the ratio of the linear growth 
rate to the effective collision frequency. Comparing Eq. (35) 
to Eq. (26), it is evident that Bo and B, are not independent, 
but Bo=B,(l+a1]e)' The amplitude dependence of the 
growth rate is weighted to high k spectrum components by 
its coupling coefficient, making B the only amplitude appear­
ing in the Markovian growth rate. 

Consistent with a weak to moderate turbulence regime, 
the decorrelation rate is taken to be a constant of order the 
growth rate, T -, = 'Yo. This rate governs not only the response 
of the actual growth rate to excursions away from the Mar­
kovian growth rate, but moderates the transfer rates in the 
spectrum component equations. In Eqs. (35) and (36), the 
decorrelation rate has been absorbed into the coefficients of 
the spectral transfer rates. The parameter 8 is a multiplier 
that allows the decorrelation rate to be artificially varied in 
order to test the role of memory. With 8= I, memory extends 
over a correlation time consistent with Eqs. (26) and (27). 
With ~ 1 (0= 100 typically), memory is lost in a small frac­
tion of the correlation time, allowing the actual growth rate 
to respond artificially fast to the Markovian growth rate as 
amplitude changes occur. This slaves the growth rate to its 
Markovian value and effectively suppresses memory. 

The solution of Eqs. (33)-(35) with fL= 1.5, al =4, 
f3,=0.1, f32=0.01, 'Yo=O.4, Bo=O.I, B 1=0.025, and 8=1 
is displayed in Figs. 2 and 3. Figure 2 shows a limit cycle 
with amplitude variations of the energies of the two spectrum 
components A and B that are -100% of their RMS value. 
Examining the evolution of the long-wavelength energy in 
relation to that of the short-wavelength energy and the 
growth rate (Fig. 3), it is evident that a dynamic balance 
between the evolving transfer rates and growth rate governs 
the energies. When A exceeds a threshold, it transfers energy 
to B, quickly increasing the magnitude of B. As B increases, 
the growth rate plummets, causing A to decrease. This lowers 
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FIG. 2. Temporal evolution of the spectrum energy components for the 
simple oscillator model. with memory retained in the growth rate. 

the transfer to B, and it decreases under viscous damping. As 
B decreases, the growth rate increases and returns to its 
former magnitude. This allows A to increase again to a level 
where transfer to B is possible, and the cycle restarts. Figure 
3 shows the actual growth rate y and the Markovian growth 
rate I'M. The two rates are clearly different, indicating that 
the usual Markovian assumption is not valid. The actual 
growth rate lags the Markovian growth rate by a correlation 
time. Comparing the lag time with the period, it is apparent 
that the cycle period is about eight times the correlation time 
in this example. The Markovian growth rate is minimum 
when the short-wavelength energy is maximum, making the 
two signals 1800 out of phase. Interestingly, the lag experi­
enced by the actual growth rate puts it approximately in 
phase with the long-wavelength energy. Figure 4 plots the 
particle flux contribution from long-wavelength modes for 
the case displayed in Figs. 2 and 3 and compares it with the 
Markovian flux. A slight time lag is evident; more impor-
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-- Actual Growth Rate 

oS ,... 
tl1 0.5 a: 

..r= 
'i 0.4 e 
(!) 
"C 
CD 0.3 

.t::l 
m 
E .... 0.2 0 
Z 

0.1 
25 30 35 40 50 

Time 

FIG. 3. Temporal evolution of the actual and Markovian growth rates for the 
simple oscillator model. 

3982 Phys. Plasmas, Vol. 1, No. 12, December 1994 

- - - - Markovian Particle Flux 

-- Actual Particle Flux 

>< 0.25 :J u: 
CD 0.2 :§ 
1:: 
tl1 

0.. 0.15 
"0 
CD 

.!::! 0.1 m 
E 0.05 0 
Z 

a 
25 30 35 

Time 

FIG. 4. Temporal evolution of the actual and Markovian particle flux for the 
dominant spectrum component in the simple oscillator model. 

tantly, the particle flux undergoes a larger fluctuation than the 
energy because the energy and growth rate components tend 
to be in phase. This gives the flux a bursty character, a fea­
ture also observed in simulations. 

The occurrence of limit cycle behavior is not particularly 
sensitive to changes in the form of the decorrelation rate r- 1 

appearing in Eq. (35), provided its magnitude is not strongly 
affected. For example, using y for 7 1 instead of Yo, or even 
[ y+ (AI Ao) liZ}, where Ao is a constant of order unity, does 
not change the qualitative behavior of the system. However, 
changing the magnitude of the decorrelation rate, accom­
plished here by varying 0, does have a significant effect. To 
test the role of memory, this parameter was set equal to 100, 
making the decorrelation rate artificially fast and thereby 
slaving the growth rate to its Markovian value. As is appar­
ent in Fig. 5, the relaxation oscillations are part of a decaying 
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FIG. 5. Time histories of the spectrum energy components for the simple 
oscillator model. The nonlinear response time of the growth rate to changes 
in amplitude has been shortened by two orders or magnitude (relative to Fig. 
2), effectively slaving the growth rate to the amplitude and thus removing 
the memory. The relaxation oscillation cannot be sustained and decays to a 
stable fixed point. 

Terry, Ware, and Newman 

Downloaded 29 Aug 2011 to 137.229.53.151. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



limit cycle that asymptotically approaches a fixed point. The 
fixed point represents the stationary saturated state usually 
assumed for dissipative trapped electron mode turbulence. 
Clearly, memory plays a critical role in the nonstationary 
character of saturation. 

In order to obtain limit cycle behavior, it also appears 
that the growth rate must decrease for increasing amplitude, 
i.e., the normalized amplitude BI Bo must be sufficient at its 
maximum value to access the decaying part of the growth 
rate curve (see Fig. I) or sufficient to make the growth rate 
fall below its value at B == O. In the nonlinear oscillator 
model, this requires BI Bo> 1-2B II Bo= 1-2/(1 + a17e) or 
BI Bo> Bol B 1- 2 = a17e -1, respectively. For numerical so­
lutions of Eqs. (38)-(40) with 8 0 ==1,8 1==0.25, and the 
remaining parameters as in Fig. 2, neither of these conditions 
is satisfied, and the limit cycle is observed to decay to a fixed 
point. This supports the interpretation of the relaxation oscil­
lation as being driven by a restoring force associated with a 
decrease of growth rate when the amplitude is raised above a 
nominal saturation balance level. 

Decomposition of the spectrum into a larger number of 
components does not affect the basic workings of the relax­
ation oscillation. With three spectrum components (the low k 
energy driven by the amplitude-dependent growth rate, the 
intermediate k energy undriven and undamped, and the high 
k energy damped by /1-) relaxation oscillations like those of 
Fig. 2 are observed when the growth rate is specified by a 
memory equation similar to Eq. (35). Likewise, when the 
growth rate is slaved, the relaxation oscillation decays to a 
stable fixed point. It is revealing to compare the solutions of 
the nonlinear oscillator system [Eqs. (33)-(35)] with those of 
generic three-component nonlinear oscillator models, whose 
coupling structure is not made to conform to any physical 
constraints.8 Whereas limit cycles are common in generic 
three oscillator models, they appear to occur only under the 
special circumstances outlined above in models constrained 
to have nonlinear transfer that is conservative and propor­
tional to a positive power of the energy. This again supports 
the restoringlinertia picture presented above with the inertia 
provided by the time history effects of the closure, as op­
posed to the memory associated with the finite time of trans­
fer in the spectrum. Because exhaustive parameter scans are 
time consuming, analytical investigation of the stability of 
fixed points is desirable and will be described elsewhere. 

There is an important caveat to the conclusion reached in 
the previous paragraphs that an amplitude-dependent growth 
rate and memory are essential elements of the relaxation os­
cillations. In a two-component spectrum representation that 
attempts to model the amplitude dependence of the correla­
tion time in a strong turbulence regime, limit cycle solutions 
are possible, even when the growth rate is fixed and there is 
no memory. Such a representation is given by 

(36) 

(37) 
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FIG. 6. Time histories of the spectrum energies for a simple oscillator model 
that incorporates an amplitude-dependent correlation time in the spectral 
transfer rates. In this model, there is a fixed growth rate and no memory 
effects. The OCCUrrence of a limit cycle is attributed to a strong (and un­
physical) phase coupling between the spectrum energy components and the 
correlation time. 

where the correlation time has been separated from the trans­
fer coefficients and is modeled by a linear correlation time 
(the growth rate) and a nonlinear time proportional to the 
square root of the dominant amplitude. Note that for the 
primary eddy damping term of Eq. (37) (the term propor­
tional to al)' this choice of correlation time yields reasonable 
weak and strong turbulence limits. Specifically, when 
'Yo> (AI Ao) 112, the transfer rate is proportional to A, or am­
plitude squared, whereas when 'Yo«AIA o)'!2, the transfer 

t . . 1 A 112 • ra e IS proportlOna to , or amplItude to the first power. 
On the other hand, the a, term of Eq. (36) has a singular (and 
unphysical) property in the strong turbulence limit: this term 
becomes proportional to A 112 and therefore ceases to be a 
coherent damping rate. This property is linked to the problem 
discussed earlier in this section, i.e., this correlation time 
representation has a strong dependence on the phase of the 
relaxation oscillation. Figure 6 shows the time histories of 
the long-wavelength and short-wavelength energies for pa­
rameter values of 'Yo==O.4, a,==4.0, ,81==0.1, ,82=0.01, 
/1-= 1.5, and Ao = 1. O. There is clearly a relaxation oscilla­
tion, even though the growth rate is constant, and there is no 
memory. In simulations of the primitive equations, Eqs. (1)­
(3) or Eq. (4), it is possible to access regimes where the 
frequency shift is small and the growth rate is therefore 
nearly constant. In these regimes, there is no limit cycle in a 
strong turbulence limit. As has been discussed, this suggests 
that in the strong turbulence limit there are difficulties in 
modeling the correlation time for a two-energy component 
projection of the spectrum. 

VI. CONCLUSIONS 

The frequency shift produced by the cross-coupling of 
the EX B and polarization drift nonlinearities in dissipative 
trapped electron mode turbulenceiO,ll has been shown to give 
rise to a saturated state that is intrinsically nonstationary. In 
this state, the power density spectrum undergoes a relaxation 
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oscillation phenomenon driven by the growth rate, as modi­
fied by the amplitude-dependent frequency shift. The effec­
tive inertia that carries the system past the nominal balance 
between the amplitude-dependent growth rate and the non­
linear spectral transfer rates has been found to be the 
memory of the growth rate of prior amplitudes. This memory 
arises from the time-history integrals over the turbulent re­
sponse function that occur in statistical closure theory. The 
memory associated with finite time of transfer in the spec­
trum (incorporated in the first-order coupled equations for 
spectrum components) does not support the relaxation oscil­
lation. Rather, it tends to drive the system toward a stationary 
saturation. 

In order to retain memory effects in an energy conserv­
ing eddy damping representation, an expansion procedure 
has been developed that, when applied to the turbulent re­
sponse function, yields a temporal evolution equation for the 
amplitude-dependent growth rate. Nonstationary saturation is 
then described by this equation and the spectrum evolution 
equation. A simple nonlinear oscillator model based on these 
equations has been solved in order to demonstrate that the 
amplitude-dependent growth rate and growth rate memory 
are necessary for the driving of relaxation oscillations in the 
saturated state. Solutions of this approximate closure model 
agree qualitatively with the time-dependent numerical solu­
tions of the original dissipative trapped electron mode turbu­
lence mode1. 13,14 

This analysis of dissipative trapped electron turbulence 
has been based on a fluid model that retains the effects of 
adiabatic electron inertia on the dynamics of nonadiabatic 
electrons in a single-field description. A two time scale treat­
ment of the model provides an alternate approach to the 
problem of cross-correlation dynamics, and yields the non­
stationary particle flux as the solution of a simple first-order 
differential equation like that of the growth rate. Under this 
description, the EX B nonlinearity is manifestly time depen­
dent, as apparent in the factor [w - w*(1 + a17e)]' This time 
dependence has been shown to strongly affect the frequency 
shift induced by the cross-coupling of the EX B and polar­
ization drift nonlinearities: Because the growth rate is driven 
by the same factor, frequency shifts that are sufficiently large 
to force a growing mode to marginal stability, also force the 
EX B nonlinearity to zero. However, the EX B nonlinearity 
is required for the frequency shift. Thus, the frequency shift 
that yields marginal stability, I.e., w=w*(l+a17e)' is the 
largest shift possible. 

The two time scale closure description for nonstationary, 
non-Markovian saturation was further examined by reducing 
the spectrum to two components, a long-wavelength energy 
component driven by the instability and a short-wavelength 
component damped by viscous dissipation. Energy conserva­
tion constraints in the nonlinear coupling were retained in the 
reduction. The spectrum component evolution equations, to­
gether with the equation for the growth rate were found to 
yield relaxation oscillation solutions driven by the growth 
rate, with the memory acting as an inertia. The period and 
amplitude of the oscillations were noted to be similar to 
those observed in simulations; as was the time history of the 
relative amplitUde of the high- and low-energy components. 
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Significantly, when the memory was removed by artificially 
decreasing the response time of growth rate to changes in the 
amplitude, the relaxation oscillations become stable and de­
cayed to a fixed point. Similarly, when memory effects were 
retained in the nonlinear transfer rates, but without the 
amplitude-dependent growth rate arising from the cross­
coupling frequency shift, no sustained relaxation oscillation 
was observed. While these results are reasonable, they have 
not been checked over an extensive parameter scan. Analysis 
of the stability of fixed point solutions to establish analytical 
criteria for the transition from fixed point to limit cycle be­
havior is clearly warranted, and will be taken up elsewhere. 

This study has underscored the importance of frequency 
shifts induced at finite amplitude, a phenomenon long over­
looked as an important element in the saturation of unstable 
drift wave fluctuations. Likewise, this study has indicated 
that memory, also overlooked in simple saturation analyses, 
is a potentially important effect in transient or nonstationary 
phenomena at finite amplitude. This includes the relaxation 
oscillations in the saturated state of dissipative trapped elec­
tron mode turbulence, but also potentially includes the intrin­
sically non stationary saturation balances involving self­
regulated turbulence22

-
24 in the L-H mode transition and the 

dithering H mode. The tools developed herein for the treat­
ment of memory are readily adapted to oscillator models, 
such as the predator-prey systems used for representing the 
self-regulated H mode, and will be applied to these problems 
in future work. 
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