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A simple dynamic model of spatiotemporally propagating transport barriers and transition fronts 
from low (L) to high (H) confinement regimes is presented. The model introduces spatial coupling 
(via transport), into the coupled evolution equations for flow shear and fluctuation intensity, thus 
coupling the supercritical L to H bifurcation instability to turbulent transport. Hence, fast 
spatiotemporal front propagation and evolutionary behavior result. The theory yields expressions for 
the propagation velocity and termination point of an L-H transition front and transport barrier. 
When the evolution of the pressure gradient, V Pi' and the contribution of V Pi to sheared electric 
field, E; ,is)ncluded, the ambient pretransition pressure gradient acts as a local source term that 
drives the evolution of the po10idal velocity shear. The transition may then evolve either as a 
spatiotemporally propagating front or as a uniform (i.e., nonlocal) fluctuation reduction or quench. 
The precise route to transition adopted depends on the relative magnitudes of the front transit time, 
Tb and the fluctuation reduction time, TI' respectively. The relevance of spatiotemporally 
propagating L-H transition fronts to the very high confinement regime (VH mode) evolution in 
DllI-D [R. 1. Pinsker and the DllI-D Team, Plasma Physics and Controlled Nuclear Fusion 
Research 1992 (International Atomic Energy Agency, Vienna, 1993), Vol. 1, p. 683] and in the Joint 
European Torus (JET) [Plasma Physics and Controlled Nuclear Fusion Research 1990 
(International Atomic Energy Agency, Vienna, 1991), Vol. 1, p. 27] is discussed. © 1995 American 
Institute of Physics. 

I. INTRODUCTION 

Transient and evolutionary phenomena are frequently 
encountered in tokamak plasmas. Foremost among these is 
the transition trom the low confinement regime (L mode) to 
the high confinement regime (H mode),1 which results in the 
formation of a narro~ region of enhanced confinement at the 
plasma edge when a critical· input power is exceeded. The 
transport barrier development is a consequence of a local 
increase in the shear of the radial electric field, which re­
duces and quenches turbulence via enhanced eddy 
decorrelation.2 Heat, particle, and poloidal and toroidal an­
gular momentum transport, as well as ion orbit 10ss,3 contrib­
ute to the evolution of the sheared radial electric field. Thus, 
the width of the H-mode transpOlt barrier is seC by some 
combination of the turbulent correlation length, neutral pen­
etration depth, and the ion poloidal gyroradius. Ongoing ex­
perimental and theoretical researchjs focused on clarifying 
the relative contributions of these various mechanisms and 
length scales to the spatial extent of the observed enhanced 
confinement region.4 

Recently, a novel confinement regime in tokamaks, 
called the very high confinement mode (VH mode),5,6 was 
discovered. The striking feature of the VH mode is that while 
the region of enhanced· confinement and increased electric 
field shear is initiated at the plasma edge (O.9~p~l.O, where 
p is the normalized radius of a flux surface), it proceeds to 
develop and propagate radially inward, eventually occupying 
the region p>O.6. The VH mode thus results in significantly 
greater enhancement of stored energy content than the H 
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mode does, and is thus of great interest to the fusion pro­
gram. From a scientific perspective, the VH mode broadens 
our concept of the L~H transition mechanism by demonstrat­
ing that the transport barrier may be delocalized and decou­
pled from the plasma boundary, and that the transition may 
propagate in space and time. Indeed, the discovery of the VH 
mode directly challenges theory to produce a model of a 
spatiotemporally propagating L-H transition front, in con­
trast to the spatially local transition paradigm advanced to 
date. Moreover, the discovery of the VH mode establishes 
that proximity to the plasma boundary is not intrinsic to con­
finement improvement transitions. The spatial propagation of 
the transition naturally introduces a new time scale, associ­
ated with the inward propagation of the enhanced confine­
ment zone. This rapid time scale will quite likely enter the 
description of H- to VH-mode evolution. Moreover, the dy­
namic limitations on transition front propagation are likely to 
yield clues as to the mechanism and parameters that govern 
the ultimate saturation of the VH mode. 

Our interest in VH-mode phenomena has been further 
whetted by the discovery of VH-mode confinement regimes 
in the Joint European Torus (JET)6 and in TUMAN-3/ and 
by the discovery of an internal transport barrier in JT-60U.8 

The appearance of the VH mode in JET is significant, be­
cause there the plasma is heated by ion cyclotron waves 
(ICRF). Hence, while sheared toroidal velocity, V;P, pro­
duced by neutral beam injection (NBI) may be the dominant 
contributor to E; in the DIII-D VH mode, it does not appear 
that V;P is intrinsic to, or necessary for, VH-mode confine­
ment regimes. Also, in contrast to the case of DIll-D, the 
evolution of VH-mode profiles in JET is quite rapid. Indeed, 
it seems that a sudden, radially nonlocal profile jump occurs 
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as the discharge transitions into the VH mode. The 
TUMAN-3 VH-mode is of interest because the heating is 
entirely Ohmic. Indeed, the only feature common to DIII-D, 
JET, and TUMAN-3 is the need for careful wall conditioning 
by boronization, etc., in order to access VH-mode regimes. 
The JT-60U internal transport barrier is of interest on account 
of its "inside-out" development (Le .• from the core out­
ward), which is in distinct contrast to the "outside-in" devel­
opment (Le., from the edge inward) characteristic of the VH 
mode. All these observations suggest that spatiotemporally 
propagating L-H transitions are dynamic phenomena intrin­
sic to turbulent plasmas. They also suggest the following 
specific questions: 

(I) What is the mechanism of VH-mode buildup? (2) 
How can the spatiotemporal propagation of a transport bar­
rier be described and understood? What constitutes a mini­
mal model? (3) What roles do averaged polo ida I sheared 
velocity, (V 0>'; averaged diamagnetic sheared velocity, 
< V d>'; and sheared toroidal velocity, V¢ play? Is V¢ neces­
sary for propagating transport barriers and VH mode? (4) 
What constitutes the "seed" for the VH-mode electric field? 
(5) What determines the spatial extent of enhanced confine­
ment regime? We shall attempt to answer these questions in 
the following. 

In this paper, a simple dynamic model of spatiotempo­
rally propagating transport barriers and L-H transition fronts 
is presented. The model introduces spatial coupling into the 
coupled evolution equations for flow shear (via transport, 
i.e., turbulent viscosity) and fluctuation intensity (via nonlin­
ear interaction), thus coupling the supercritical L-H bifurca­
tion instability to turbulent transport. Hence, spatiotemporal 
front propagation and fast evolutionary behavior result. Just 
as the paradigm for the local L-H transition is the predator­
prey model9 (with the radial electric field shear, E;, as 
predator and fluctuation intensity as prey), an epidemic 
propagation model (with E; playing the role of disease and 
fluctuation intensity analogous to the susceptible population) 
is the natural paradigm for the spatiotemporally propagating 
L-H transition front. This type of model has been used to 
study the epidemiology of the Black Death and other com­
municable diseases.1O Such a model defines a second transi­
tion evolution time scale-namely, the front transit time­
which is a hybrid of the local L-H bifurcation instability 
growth rate and a diffusive time scale, i.e., Tr= LJ.IV F, 
where V F = 2( W1L.L)(Wyo) ~ is the front propagation ve­
locity, L.L is the profile scale length, W is the characteristic 
radial scale length of the turbulence, and Yo is the linear 
growth rate. The parameter Ll€ is a measure of the criticality 
that will be explicitly defined in Sec. III. 

From the perspective of this model, a spatially localized 
seed flow at the edge (due to ion orbit loss, for example) 
could trigger an L-H transition front that propagates through 
the region, which is locally unstable to the L-H bifurcation, 
i.e., the region with A€>O. Note, then, that the spatial extent 
of the enhanced confinement zone is determined by Ll€(r), 
and thus by the pretransition profiles. The theory yields ex­
pressions for the propagation velocity and the termination 
point of the transition front. The simple two-field L-H tran­
sition model9 can also be expanded to include pressure gra-
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dient evolution and the contribution of V P i to E; . II In con­
trast to the simpler model, the ambient pretransition pressure 
gradient acts as a local source term that drives the evolution 
of the poloidal velocity shear. Thus, the transition may 
evolve either as (0 a spatiotemporally propagating front, as 
discussed above, or as (U) a uniform (Le., nonlocal) fluctua­
tion reduction or even a fluctuation quench. It is worthwhile 
to point out that the front propagation is initialized by a 
small, strongly supercritical (to the L-H transition) region at 
the edge. This triggers a propagating transition front that then 
moves into a weakly supercriticai core. The strongly super­
critical edge is created by boundary effects or strong­
fluctuation energy gradients-both typical of L-mode edge 
plasmas. 

The precise route to transition the plasma will choose is 
a quantitative question answered by comparing the relative 
magnitudes of the front transit time, Tr, and the fluctuation 
reduction time, Tf' respectively. To understand the competi­
tion between these two, recall that for power levels just 
above the power threshold, P;3 P th' the averaged poloidal 
sheared velocity, (V 0)', greatly exceeds the averaged Ex B 
sheared velocity, < V E)', with fluctuation intensity, E, close to 
its L-mode level, E.;;; I, while for P}> P th , V Pi dominates 
(V E) 1 with E =0. Thus, it is not surprising that route (i) is 
chosen for moderate input power levels «VO)'>(Vd)')' 
while route Oi) appears for high power « V d> 1 > (V o} '). 
Thus, the qualitative nature of the route to the formation of a 
global VH-mode-like confinement state is seen to be a func­
tion of input power, and other parameters that determine the 
ratio TTl Tf. This finding provides a clue to the longstanding 
quandary of how machine parameters determine local versus 
non local transport and profile evolution. 

The remainder of this paper is organized in the following 
manner. The basic, radially dependent model is derived in 
Sec. II. Section III contains an analysis of the L-H transition 
propagation in the simple flow-fluctuation model. In particu­
lar, expressions for the front propagation speed and the 
propagation criterion are derived and compared with numeri­
cal calculations. In Sec. IV. front dynamics in the three-field 
flow-fluctuation-pressure gradient model are studied numeri­
cally. The focus here is on the relative importance of front 
propagation and uniform fluctuation reduction mechanisms. 
Finally, Sec. V contains a discussion and conclusions. Spe­
cial attention is given to limitations on the theory. its rel­
evance to the VH-mode evolution, a comparison of VH­
mode evolution in DIII-D and JET, and plans for future 
work. 

II. DERIVATION OF THE NON LOCAL FLUCTUATION· 
FLOW MODEL 

In this section, the spatially nonlocal fluctuation flow 
model is derived. This model is an extension of the local 
phase transition model for the L-H bifurcation.9 In that 
model, two coupled order parameters-namely, the local po­
loidal flow shear (V 0)' and the local fluctuation intensity, 
E= Ink1nol--evolve according to the coupled equations: 

BE at = YoE- a1E2- a2(V 0)'2E, (1) 
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(2) 

Here, Yo is the linear growth rate in the absence of shellred 
flow, jL is the damping due to magnetic pumping, and the 
angular brackets, ( ), indicate the poloidal and the toroidal 
angle average over a magnetic flux surface. The coefficients 
ai' a2' and a3 for a variety of turbulence models are given in 
Ref. 9. It is possible to derive generic scalings for these 
coefficients. Assuming that the level of fluctuations at satu­
ration is given by the mixing length estimate, the a l coeffi­
cient scales as aI oc( yoLl!w~). Using the turbulence suppres­
sion criterion of Biglari et at} it is possible to estimate a2, 
a2oc(f~W~/yo). In these expressions, c" = ~Telmi is the 
speed of sound, Ps=C/fli is the sound Larmor radius, ko is 
the poloidal wave number, Wk is the radial correlation length 
of the turbulence, L.L is the L-mode density scale length, and 
the overbar on ko indicates the spectral average. The coeffi-

cient a3 has the generic scaling a3 cc (.Jk'loPscs IWk ). 

This model may be easily extended to incorporate spatial 
coupling by recognizing that radial coupling occurs because 
of fluxes of fluctuation energy and poloidal momentum in­
duced by the divergence-free, fluctuation-induced ExB flow. 
Hence, we immediately rewrite Eqs. (1) and (2) as 

(3) 

a(v)' aJv' 
_0_+_8=_ A(V )'+ (V)'E at ax f1, (J a3 e , (4) 

where J E and J v' are the fluxes of fluctuation intensity and 
8 

poloidal flow shear, respectively. The convective terms of 
Eqs. (3) and (4) clearly represent fluctuation energy advec­
tion due to nonlinear interaction and momentum convection, 
i.e., 

(5) 

and 

(6) 

The conservative structure of the fluxes follows from the 
incompressibility of the EXBo flow. Note that Eqs. (3) and 
(4) constitute a generic form of the local fluctuation intensity 
equation (i.e., the spectrally integrated wave-kinetic equa­
tion) and the poloidal flow equation. 

The spatial fluxes J E and J v' must now be specified. The 
8 

most general forms are 

(7) 

and 

a(V (J)' . OD 
Jv'=-v -a--+ r v" e X e 

(8) 
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where D is the intensity diffusivity, v is the turbulent flow 
viscosity, and r~D, r~;'> are the off-diagonal contributions, 

8 
respectively. Moreover, since Eqs. (1) and (2) include ex-
plicit contributions from local coupling to dissipation (aIE2) 
and the Reynolds stress dynamo (a3E(Vo)'), there is no loss 
of generality in setting r~D = r~? = 0 in Eqs. (7) and (8). 

Observing that the turbulence is electrostatic, we may 
then write 

D=v=DoE, (9) 

where Do"" Yo W2
• Thus, the nonlocal evolution equations 

are finally 

aE 2 ,2 d ( , dE) 
ai=yoE-aIE -a2(VO) E+ ax Doli dX' (10) 

__ 0_=_ A(V )'+a (V)'E+- DE __ 0_ . a(v)' a ( a(v)') 
at f1, (J 3 0 ax 0 ax 

(11) 

Note that the diffusion term and the alE
2 form of Eq. (10) 

together account for mode coupling to dissipation, and cor­
respond to radial and poloidal drift coupling, respectively. 
Equation (10) is thus a "cartoon version" of a spatially inte­
grated wave kinetic equation. The nonlocality of Eq. (10) is 
familiar from renormalized turbulence theories· of tokamak 
turbulence,12 where nonlinearities appear as diffusion opera­
tors. The nonlocal term of Eq. (11) is simply poloidal viscos­
ity. Both transport terms are nonlinear (i.e., D=DoE), since 
diffusion is fluctuation induced. 

Taken together, Eqs. (10) and (11) constitute a primitive 
K -€ model of turbulence and the L-H transition. Such famil­
iar K -€ models fall midway between a full renormalized 
theory and primitive transport modeling. They treat the local 
fluctuation intensity as a field to be spatiotemporally 
evolved, and respect basic· constraints, such as conservation 
of total energy between flow and fluctuations. The equations 
of a K-€ model have the structure of highly nonlinear 
reaction-diffusion equations, the solution of which~ are 
known to exhibit rich spatiotemporal behavior, such as 
propagating fronts. 13 

III. L-H TRANSITION PROPAGATION IN THE FLOW· 
FLUCTUATION MODEL 

In this section, we consider the extension of the two­
equation flow-fluctuation phase transition model9 that incor­
porates the radial coupling given by Eqs. (10) and (11). This 
system of equations is a reaction-diffusion system with non­
linear diffusivity. The diffusivity allows propagating front 
solutions as well as diffusive damping. We will consider first 
the homogeneous case, with all coefficients independent of 
x, as it is simpler to extract the basic properties of the solu­
tions. In this case, Eqs. (10) and (11) have the same fixed­
point solutions as the zero-dimensional model. Apart from 
the trivial solution (E =0 and (V 0)' =0), the two fixed points 
are (1) the L-mode fixed point, 

(12) 
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and (2) the H-mode fixed point, 

f.L 
E=- and 

a3 
(13) 

The local stability properties of these fixed points, which 
have been studied in Ref. 9, are modified by radial diffusion. 
The linear eigenvalues for the L-mode fixed point are 
'Y= - 'Yo- 'YoDoelaJ for the "fluctuation" mode, which is al­
ways heavily damped, and 'Y= 'Yo A€- YoDok21aJ for the 
"flow" mode. Here, k is the radial wave number and 
Ae=(a3ial- jd'Yo)' The L-mode root becomes unstable if 

Dok 2 

A€>-- (14) 
al 

Here, the transition is triggered by the flow instability when 
y>O. In the case with split coupling, A€ has to beat diffusive 
damping for the transition to occur. Equation (14) suggests 
that broad transition fronts are dynamically favored. In prac­
tice, AE is a function of x, and its x dependence will deter­
mine the width of the steep E; region. The transition condi­
tion can also be looked at in a different way-that is, as the 
determination of the radial correlation length. Using the ex­
pression suggested by mixing length estimates for aJ, we 
obtain 

2 2 'YoL ~ 
kc Wk=--,o;;- A€. (15) 

Note that the radial correlation length diverges at the critical 
point, as expected. For the H-mode fixed point, the local 
stability analysis indicates that both roots are stable with the 
added diffusive damping. 

For the oversimplified but instructive case of constant 
coefficients, we can easily see that this system of equations 
exhibits propagating front solutions. We can look for solu­
tions of Eqs. (10) and (11) that are functions of g=x-ct, 
where c is the front propagation velocity. These propagating 
fronts are the solution of the two nonlinear ordinary differ­
ential equations: 

(16) 

and 

We solve these two equations as an eigenvalue problem, with 
c being the eigenvalue and with boundary conditions asymp­
toting to the H-mode root for g-.-oo and to the L-mode 
solution for g-.+oo. Thus, the solution of Eqs. (16) and (17) 
is a moving shearing front that "eats" into the fluctuations 
and pushes the H mode into the plasma core. In Fig. 1, we 
plot a particular solution as an illustration. For a fixed value 
of the parameters. this solution is not unique. An infinite 
sequence of solutions can be found, each with a different 
value of c and radial structure of the front. This situation is 
typical of diffusion-reaction equations. Indeed, a standard 
problem for this type of equation is to determine which of 
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FIG. 1. Self-similar front propagation solution of Eqs. (16) and (17) with 
boundary conditions: the H-mode root for (;- -0<: and the L-mode solution 
for f-+oc. 

the possible solutions of the wave propagation equations is 
the actual solution of the partial differential equation for a 
given set of initial conditions. Alternatively, the problem is to 
find the front velocity (Le., eigenvalue) of the solution of 
Eqs. (10) and (l1) for this set of initial conditions. To address 
this issue analytically,. a simplification of the initial system of 
equations, Eqs. (10) and (t1), is needed. 

Therefore, by neglecting the diffusion term in the fluc­
tuation equation (Le., typically yo'$>k2DO)' the fluctuation 
level is 

'YO- a 2(VO},2 
E=":"":"-':::":"""':':"-­a, (18) 

As a result, the model is reduced to a single, albeit highly 
nonlinear. evolution equation for the local velocity shear, 

,a2a 3 13 = 'Yo A €( V 0) - -- < V 0) . 
aJ 

(19) 

This equation is similar to the Kolmogorov­
Petrovsky-Piskunov l4 and to the Fisher equation,J5 with a 
nonlinear diffusion term. For this equation. we can now also 
look for propagating solutions by setting g=x-ct. The cor­
responding ordinary differential equation (in dimensionless 
variables) is 

CF ~~ + ddg [( 1- aJa~E U2
) ~~J+A€ U(l-U2)=O, 

(20) 

where U == (V 0)' /~, CF == c/( 'Yo )DoiaJ)' and the length, 
g, is normalized to the characteristic radial length, LD 
= )Do/aJ' 

Equation (20) can be interpreted as the motion of a par­
ticle in a potential field. J6 By defining the potential, F, as 

I 2 I 4 
F==-iA€ U +JOE4" U, (21) 
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EG. 2. Potential energy of a particle motion problem equivalent to the 
self-similar front propagation described by Eq. (20). 

and identifying U with the particle position, XU), and gwith 
time, t, Eq. (20) can be rewritten as a one-dimensional (I-D) 
nonlinear mechanics problem; i.e., 

(22) 

This equation describes the motion of a particle with a time­
dependent mass, m(t)= 1-al ~E X(t)/a3' subject to a fric­
tional force, c F' within a potential field, F. The form of the 
potential is plotted in Fig. 2. The eigenvalue problem is 
equivalent to determining the frictional force, c F, which 
must be applied to the particle initially at position A (i.e., an 
H-mode root) so that it comes to rest at position B (L-mode 
root) with no oscillations around the position B. Note that in 
this problem, the mass of the particle decreases at the same 
time that it is accelerating downhill. This mechanical anal­
ogy allows considerable physical insight into the problem 
but also illustrates the difficulties encountered in ° practical 
calculations. To start the motion, the particle requires an in­
finitesimal push from A. Numerically, the push is never in­
finitesimal, and the solution depends on this initial push. 
Near the critical point, the initial condition determines the 
solution. 

In the phase space (U,dU/dl;), Eq. (20) has two station­
ary points: (0,0), associated with the L-mode solution, and 
(0,±1), associated with the two H-mode roots. The linear 
stability analysis identifies the latter with a saddle point, and 
the L mode can be either a stable node, for c}> 4 ~ E= C~in , 
or a stable spiral, for c}< C~in' For a stable node, the front 
smoothly connects the H mode on the outside with the 
L-mode solutioIi inside [Fig. 3(a)], while for a stable spiral, 
the front oscillates when connecting to the L mode [Fig. 
3(b)]. It can be provenl7 that for initial conditions that are 
nonzero on a finite interval in x, the actual velocity of the 
front selected is the minimum value and is the value for a 
stable node-that is, c F= C min' This is the value of the fric­
tion (in the particle motion analogy) that brings the particle 
to rest at point B (Fig. 2). This velocity is 
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FIG. 3. Front propagation solution for the single-equation problem, Eq. 
(20): (a) For cF>cmin and (b) for CF<c min' 

c=2yo ~ a 3 _.!!:...=2 -(WyO),jih. (
D )1I2~ W 
al al Yo LJ. 

(23) 

In this, we have approximated the turbulent diffusivity by 
Do~ W2yo. Here, W is the spectral width Wk' Equation (23) 
shows that the front velocity is a hybrid of the turbulence 
velocity, yoW, and of how much the local L-H threshold has 
been exceeded, ~E-OC .Jp-Pth. 18 Near the critical point, the 
velocity of the front is small and the transition primarily 
diffuses inward. For p'f:> P th' the velocity of the front is 
large, and it propagates nondiffusively. 

An alternative way to analyze Eq. ° (19) is to study the 
evolution of the leading edge of the front. At the leading 
edge, the solution has low amplitude, so that the equation 
can be linearized. The front edge may be approximated by an 
exponential in x, (Ve)' ocexp( - AX). The linear analysis leads 
to the following solution: 

( ~ 2 ) 
cal YoDo 

A=;;--D l± l-4-y-~E. 
- 01'0 ° c al _ 

(24) 

To avoid oscillations in x, c ;:,;a.0 2Yo~Do ~E/al.oThis is the 
same condition as that for a stable node. Furthermore, when 
c reaches its minimum value and satisfies Eq. (23), A 
= ~al ~E/ Do. Therefore, the characteristic scale length- of 
the front, ~front'= 1/A, is -~ 

~o W 1 
~front= --A-= -L ~ W. 

al I.l.E 1. y~E 
(25) 

The front scale length is the same as the transition layer 
correlation length, like' given by Eq. (15), and diverges at 
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the critical point. Having calculated the front velocity, we 
can detennine its transit time, TT, which depends on the pen­
etration length, L, that is the radial extent of the region with 
A€>O, and is given by 

L L ,-;;;- 1 LLl. 1 
TT= -;= 21'0 \j~= 21'0 -wz ~. (26) 

For the two-equation model with x-dependent coeffi­
cients, it is not possible to perform a similar analytical study, 
as has been done for Eq. (19). However, we can solve these 
equations numerically as an initial value problem and test 
how much of the infonnation obtained from the analysis of 
Eq. (I9) can be applied to the two-equation model. The ini­
tial value problem can be fonnulated in the following way. 
We start with a H-mode-type solution near the plasma edge 
and an L-mode solution everywhere else (Fig. 4). Then, Eqs. 
(10) and (11) are solved numerically using the finite differ­
ence partial differential equation solver PDE2D 19 on a rectan­
gular domain. First, we consider the case with constant co­
efficients. Front propagation solutions are always found 
above the critical point, with propagation dominating over 
diffusion for all cases considered (Fig. 5). The front velocity 
agrees well with the single-equation result, Eq. (23), and 
exhibits the characteristic ~ dependence (Fig. 6). 

When the system of equations has radially dependent 
coefficients, the front velocity is not a constant, and the front 
solution is no longer self-similar. The numerical results show 
that the system adapts rapidly to the local value of the pa­
rameters and that the instantaneous velocity has a similar 
dependence on the local parameters, as given by Eq. (19) 
(Fig. 6). For spatially varying parameters, the front velocity 
diverges from ~ near the critical point. This can be un­
derstood by recognizing that arbitrarily close to the critical 
point x front' AAfront will exceed the scale for variation of the 
coefficients. At a radial position near where A€=O (i.e., 
where locally the parameters go from supercritical to sub­
critical), the front velocity vanishes. The point at which the 
front actually stops is consistently at a value of A€ somewhat 
greater than zero. This may be understood from the definition 
of the position of the front, which we take to be the middle 
of the propagating transition. If the coefficients change rap-
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FIG. 5. Front propagation solution for the two equation model, Eqs. (10) 
and (11), with the parameters aial=1.4, p./f..to=l, and Do=O.OI. (a) Fluc­
tuation level profiles for a series of times; (b) U profiles for the same times. 
Note the propagation of the self-similar front inward as time advances. 

idly with x, [(dA€/dx)/(kc A€)~l], there is some evidence 
that the front may overshoot the neutral point and then relax 
back. The numerical results also show that the steepness of 
the front and the front height are functions of A€, in good 
agreement with the homogeneous single-equation results. 
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FIG. 6. Front velocity (CF) for Eqs. (10) and (11) with p./Yo= I, Do=O.OI, 
and aia, =a. The circles indicate different values of a, with that value held 
constant over x. The lines indicate a varying with x, with the curve being 
the analytic result. 
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IV. FLOW-FLUCTUATION-VPj MODEL 

In the dynamics of the L-H transition, the ion pressure 
gradient, V Pi' plays an essential role. l1 The V P i couples to 
the phase transition model in several ways. In particular, 
through the diamagnetic drift, V Pi contributes to the Ex B 
shear velocity, which is no longer identical to the poloidal 
shear flow. Depending on the nature of the turbulence, V Pi 
also contributes to the turbulence drive through the gradient 
of the ion temperature, dT/dr, and/or the density gradient, 
dn/dr. Since changes on the turbulence level modify the 
transport, a transport equation for the evolution of V Pi is 
also needed. 

A local phase transition model for the L-H transition 
incorporating the V Pi evolution was given in Ref. 11. The 
main consequences of the inclusion of V Pi in the phase tran­
sition model are (1) the existence of a quenched fluctuation 
fixed point, with E r dominated by V Pi, which· may have 
direct relevance to the experimental observations of the H 
mode; and (2) the appearance of broken symmetry in the 
H-mode state due to the preferred direction in the shear 
flowY In this section, we extend the L-H transition front 
propagation model of Sec. ill by including the effect of V Pi. 
For the extended model, the equations are 

1 aE a ( aE) 
-2 -a =YoNE-alE2-a2(V~?E+ - DoE - ,-. t ax ax .-

(27) 

aN a ( aN) 
~a =-a~N-a4NE+r+-a· DoE- . 
t· x. ax 

(29) 

Here, we assume that the linear growth rate is proportional to 
the pressure gradient, 'Yo=Yo( -dP/dr)(Ll./P i ), and we 
have introduced a symbol for the normalized pressure gradi­
ent, N~( -dP/dr)(L 1.1 Pi). In the pressure evolution equa­
tion, r is proportional to the energy flux from the plasma 
core and can be directly related to the power input, Also, 
a4=X1IW~, where Xl E is the anomalous diffusivity induced 
by the turbulence; and as=xofLl, where XO is the neoclassi­
cal diffusivity. 

To complete the set of equations, we need a relationship 
between the flow gradients and N. The poloidal flow velocity 
and the Ex B velocity are related by 

1 dP· 
(V/I)=(V

E
)- ___ I. 

eBzne dr 
(30) 

Since we want to avoid complications forced by considering 
the separate evolution of density and ion temperature, we 
assume (as in Ref. 11) that the density gradient dominates 
VP, and so the relation between poloidaI and ExB shear 
flow is 

(V)' = (V )' _ p sC s N2 
/I E L2 . 

1. 

(31) 

In this case, N~( -dnldr)(Ll.ln), and the ion temperature 
is assumed to be constant with time. 
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To carry out the numerical calculations, it is useful to 
write Eqs. (27)-(29) in the dimensionless form by setting 

. r= Yot, 
x 

X= L
D

• 

(32) 

The L-H transition front propagation model is then de­
scribed by four dimensionless equations: 

aE - -2 2 - a (- aE) -=EN-E -V E+- E-
ar ax ax' (33) 

au _ a (_ au) 
-=aEV-bU+ - E-
ar ax ax' 

(34) 

aN _ a (_ aN) 
-=-AEN-BN+Q+- E-
ar ax ax' 

(35) 

U=V-aN2. (36) 

Here, we have introduced six dimensionless parameters: 

f..t ba-
Yo' 

Xl 
A= YoW~' (37) 

(38) 

Equations (33)-(36) are solved numerically using the 
finite difference partial differential equation solver PDE2D19 

on a rectangular domain. The equations are inhomogeneous 
in x, and the boundary conditions are set to be periodic. The 
most accurate numerical scheme in PDE2D is utilized. and the 
solutions are checked for both spatial and temporal conyer­
gence. The radial domain was divided into two regions: edge 
and core. The edge was characterized by a higher driving 
(larger gradients at the edge) and higher Reynolds stress (Le., 
a large edge gradient of the fluctuation envelope). 

The numerical solutions can be classified into two ex­
treme types: (1) propagating front solutions, which are very 
similar to the ones discussed in Sec. III; and (2) uniform 
transitions, in which case there is no radial propagation and 
the L-H transition occurs uniformly at all radial locations. 
The most important parameter characterizing these two types 
of solutions is a. Depending on the parameters, combina­
tions of these two types of solutions are found with a rich 
variety of dynamics. Here, we consider the two extreme lim­
its. 

Propagating front solutions, like the ones described in 
Sec. III, exist only for small values of the parameter a. In 
this case, the sheared radial electric field is dominated by 
poloidal sheared flow. The fronts propagate nondiffusively, 
with propagation beating the simple diffusion· speed for all 
cases tested above the transition threshold with a small 
enough. In Fig. 7, the poloidal shear flow, the fluctuation 
level, and the pressure gradient profile are shown at five 
different times after the edge transition. We can see the shear 
flow profile propagating inward. The more familiar pressure 
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FIG. 7. Front propagation solution for the three-equation model. Eqs. (33)­
(36). The parameters for this case are Q= 10.2, Do=O.OI, a;nside=0.6. 
aedge=1.2. b=O.S. A=3, 8=0.001, and a=O.OOOOI. (a) Profiles of the 
fluctuation level. E. at successive times; (b) U profiles; (c) N profiles. 

profiles are shown in Fig. 8 at the same times during the 
transition as in Fig. 7. The front propagation velocity, C F' is 
given in dimensionless form by 

(39) 

This cOlTesponds to the propagation velocity given in Eq. 
(25), with Ll E = a ~ Q / A - b for this variant of the model. The 
front velocity goes to zero at the critical point, ~Qcrit/A 
= bla. Equation (39), derived in the single-equation limit 
(Sec. III), agrees well with the numerical results for the 
propagating front solution of the three-equation model (Fig. 
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FIG. 8. Radial pressure profiles for the transition shown in Fig. 7. 

9). If a smooth x dependence is included in the coefficients 
of the basic model, the front stops propagating when the 
velocity becomes zero--that is, the local parameters pass 
from supercritical to subcritical values. 

The spatially uniform L-H transition always exists for 
a,cO. This is in contrast to the two-equation model (a=O), 
where there is no seed flow to start the transition, even if the 
core region is supercriticaL For a,cO, the pressure gradient 
gives a local diamagnetic seed flow and the transition can 
always be triggered. However, for small values of a the 
propagating front can pass through a particular radius before 
the local transition occurs there, as discussed above. In this 
case, the H-mode solutions are characterized by a strong or 
even a dominant contribution from the pressure gradient to 
the sheared radial electric field. Because the growth rate and 
Reynolds stress are larger at the edge, the transition is first 
triggered in the edge region (Fig. 10). This is followed by a 
uniform transition at all radial locations in the core that are 
locally supercritical. Both in the core and at the edge, the 
transition is triggered by the dynamo instability of the 
sheared poloidal flow, Le., Ll€>O. Note that the simultaneous 
transition within the core region, which is actually local in 
each radial location, gives the appearance of a nonlocal pro­
cess. This is because the edge transition seems to propagate 
at an arbitrarily large velocity into the core region. The char­
acteristic time scale for the transition, Tf' is essentially the 
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FIG. 9. Front velocity (c F) as a function of QIA for Eqs. (33)-(36). The 
parameters are the same as in Fig. 7, except for QIA. which is varied. 
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time taken for the electric field shear to build up and sup­
press the fluctuations. Assuming that the transition is from a 
supercritical L mode to H mode, the transition time is 

This time scale diverges near the critical point, ~Qcfit/A 
= bfa, as it should. At each radial position, this result agrees 
with the numerical calculations (Fig. 11). The duration of the 
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FIG. 11. Transition time scale for the uniform transition. The parameters are 
the same as in Fig. 9, except for the varying QIA. 

transition depends on the nonlinear evolution. However, this 
phase has a much shorter time scale than Eq. (40) and seems 
to be controlled by the evolution of E. Therefore, the relative 
magnitude of the front transit time, TT' and the fluctuation 
reduction time is 

TT=~~ fa /Q-b [In 
Tf 2 W \f \fA 

. (A[a 2(QfA) -b2JII2(a -J(QjIJ -b »)]-1 
X a1!2b 312aQ (41) 

Hence, front propagation dominates for power densities 
near the threshold values and for very small values of a. A 
particularly interesting case is when the input power is large 
enough to trigger a uniform transition to the quenched­
fluctuation state~ In this case, the edge transition always oc­
curs first and exhibits the usual characteristics. However, the 
uniform transition in the core region can occur without gen­
eration of sheared poloidal flow. This type of uniform tran­
sition is relevant only for very high-power levels. Indeed, for 
such levels there is no L-mode state solution in the present 
model, and the interpretation of this result is unclear. 

V. DISCUSSION AND CONCLUSIONS 

In this paper, we have explored the spatiotemporal 
propagation dynamics of L-H transitions fronts. The princi­
pal results of this paper are as follows. 

(1) The phase transition model (with VP i ) of the L-H bi­
furcation has been extended to include spatial coupling 
effects and can describe propagating transition fronts._ 

(2) The flow-fluctuation model exhibits spatially propagat-
ing front solutions. The fronts propagate into locally su­
percritical regions once a seed flow has been established. 

(3) The front propagation velocity is 

W 2W 
VF=-2 - (YoW)~=--, 

LJ. ~TETf 
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where A€>O is the local supercriticality condition, TE is the 
confinement time, and Tj is the local transition time. Note 
that front propagation is determined by transport (D = 'Yo W2) 
and the local supercritical bifurcation instability. The time 
scale for VH-mode development is not determined solely by 
transport. 

(4) Front propagation ceases when A€---'O locally. This point 
is determined by L-mode profiles. 

(5) When the pressure gradient evolution is included, a uni­
form fluctuation reduction or quench can occur. The 
route to transition depends on the ratio Trl Tj' the ratio of 
the front transit time Tr to the local fluctuation reduction 
time Tj. Typically, when < V II)' > (V d > I, Tr< Tj so the 
transition occurs via direct fluctuation reduction. 

Having developed the basic theory of spatiotemporally 
propagating transition fronts, it is now possible to address 
the issues concerning the VH mode raised earlier. First, the 
VH mode develops by a spatially propagating (Le., convec­
tive) transition instability. The dynamics of this instability 
are a hybrid of local transport and the local phase transition 
instability. Propagation can occur either slowly (Le., Tr> Tj), 

in the form of a localized but moving front, or rapidly (i.e., 
Tj> Tr) in the form of a "nonlocal" collapse. Second, both 
<V II}' and < V d) I contribute to the spatiotemporally evolving 
(V E)" For Tr> Tj. the electric field is primarily the result of 
rotation. For Tj> Tr. < V d) I dominates. Also, since the spa­
tially localized transition model indicates that the finite <V (/ 
stage is usually of limited duration, it follows that the 
(V II}' *0 layer should appear as an "attached wake," which 
lags behind (but moves with) the local transition front. In the 
case of a "nonlocal collapse," the extent of this <V o}' wake 
shrinks. Thus. detecting poloidal rotation associated with 
VH-mode evolution is most feasible when P;;;' Peri!' using a 
multichannel (in space) charge exchange recombination 
(CER) system. Note that toroidal rotation (V q,) is not a priori 
necessary for a spatially propagating transition. This is con­
sistent with the fact that a VH-mode-like regime has been 
achieved on JET and TUMAN-3. Third, the extent of the 
enhanced confinement zone is determined by the radial width 
of the locally supercritical region (Le., A€>O). Note that this 
criterion naturally favors conditions of modest density and 
high ion temperature (to minimize magnetic pumping), as 
well as peaked profiles (to maximize drive). Such conditions 
are typical of VH-mode discharges. It is worthwhile to point 
out that the front propagation is initialized by a small, 
strongly supercritical (to L-H transition) region at the edge. 
This triggers a propagating transition front, which then 
moves into a weakly supercritical core. The strongly super­
critical edge is created by boundary effects or strong fluctua­
tion energy gradients-both typical of L-mode edge plasmas. 
It follows that the VH mode should develop from the "seed" 
region to the periphery of the power deposition region. 

Having discussed the general properties of the propaga­
tion of transport barriers, we can estimate the propagation 
velocity for particular environmental conditions. We consider 
a DIII-D discharge20 of 1 MA with a toroidal magnetic field 
1.2 T. The L-mode edge parameters for this discharge are 
Ti= 120 eV, ne= 1 X 1013 cm -3, Ll. =2.7 cm, and Xeff=2X 104 
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TABLE 1. Transition parameters. 

Power threshold Transition time 

D1I1-D 
JET 

2.6MW 
2.3 MW 

4.7 ms 
2.6 ms 

Front propagation velocity 

25 mls 
47 mls 

cm2/s. We assume that L, = 180 cm and W = 1 cm. For JET,21 
the corresponding parameters are T j =400 eV, ne=lXlOl3 
cm-3

, LJ.. =2.7 cm. and Xeff=4X104 cm2/s. Here, we take 
Ls = 360 cm and W = 1 cm. Using these parameters, we can 
estimate the power threshold, the front propagation velocity, 
and the transition time. The values obtained are given in 
Table 1. Note that by transition time we mean the rise time of 
the shear flow, not the fluctuation quench time. 

While this model discussed above demonstrates the sim­
plicity and generality of the propagating transition front phe­
nomenon, it is not fully suitable for detailed quantitative 
comparison with data from DIII-D. This is because it omits 
the following factors: 

(1) Toroidal velocity shear evolution and transport. Note that 
V <1>' as well as V 0' influences E; evolution, and is the 
dominant contributor to E; in DIII-D: 

(2) profile evolution due to fueling. This might mitigate the 
need for a large supercritical region; and 

(3) local pressure gradient limitation due to the essential el­
ement of flux-surface triangularity, which allows access 
to the second-stable region. This is crucial for explaining 
why ELMs do not occur in the VH mode. 

A more complete model, suitable for comparison with 
VH-mode data, will be discussed in a future publication. 

We conclude by noting that all the examples and results 
discussed here are seeded with the intent of describing VH­
mode-like phenomena, in which the transport barrier propa­
gates and extends from the edge inward. However, we em­
phasize that this is not intrinsic to transport barrier dynamics, 
but is simply a consequence of initializing a seed shear flow 
or steep V P i at the outer boundary. Initializing a steep V P i 
in the confinement region, in turn, triggers an outward propa­
gating barrier. as found in JT-60U. This phenomenon will be 
discussed further in future publications. 
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