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Avalanche structure in a running sandpile model
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The probability distribution function of the avalanche size in the sandpile model does not verify strict
self-similarity under changes of the sandpile size. Here we show the existence of avalanches with different
space-time structure, and each type of avalanche has a different scaling with the sandpile size. This is the main
cause of the lack of self-similarity of the probability distribution function of the avalanche sizes, although the
boundary effects can also play a role.
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[. INTRODUCTION Sec. IV. This model ignores space correlations and as a result
cannot reproduce the tail of the probability functions, but
Many systems in nature are governed by self-organizegome insight is given into their parametric dependences. In
criticality (SOO [1]. In such systems, relaxation and trans-Sec. V, we calculate the probability of avalanches with a
port processes occur through evefagalanchesof all sizes. ~ given size or duration on the basis of the model. The scaling
Because all systems have a finite size, an important issue #§ these PDFs with the sandpile size and the effect of the
how transport scales with the system size. An example thftoundary are discussed in Sec. VI. Finally, in Sec. VII, we
emphasizes this point is the case of magnetically confine@resent the conclusions of this paper.
plasmas. In some regimes, plasma transport seems to be gov-
erned by SO({2,3]. Therefore, to determine the size of a
power-producing plant based on fusion reactions, we must
know the scaling of plasma transport with system size. Im- The sandpile model has been suggested as a paradigm for
portant economic consequences are attached to the accurad@@C turbulent plasma transport in magnetic confinement de-
of this scaling. vices[2,3]. The sandpile model has the instability gradients
If the system dynamics has exact self-similar propertiesrepresented by the slope of the sandpile, while the turbulent
the probability distribution functiofPDF) of the event size transport is modeled by the local amount of sand that falls
S for varying system sizé, verifies P(S,L)=LAF(S/L?). (overturng when the sandpile becomes locally unstable. A
This is the simplest form of scaling with system size. How-random “rain” of sand grains drives the sandpile. This drive
ever, even the simpler SOC models, such as the saridgile models the input power/fuel in the confinement system. The
or the forest-fire mod€gl], do not obey exact self-similarity sandpile model allows us to study the dynamics of the trans-
[5,6]. Multifractal scaling laws have been found to better port independent of both the local instability mechanism and
describe the finite-size scaling of the numerically evaluatedhe local transport mechanism.
PDFs in the sandpile modghb]. In Refs.[6,7], it has been The PDF of the transport events is one of the measurable
found that the breakdown of the exact self-similarity of thequantities, and the experimentally measured ones can be
forest fire was caused by the different spatial structure of theompared to theoretical expectations. Even in the simple
fires. The forest-fire model has two qualitatively different sandpile model, the finite-size scaling of the PDFs is com-
fires that superimpose to give the effective exponents megslicated and has a multifractal characft. Therefore, it is
sured in numerical calculations. important to understand the underlying structure of the ava-
Here, we consider the sandpile model and explore théanches that causes the multifractal nature of the scaling.
possible structures of the avalanches. In this case, we con- Here, we use a standard cellular automata algor[th,&l
sider the space-time structure of the avalanches. This allows study the dynamics of the driven sandpile and the corre-
us to classify the avalanches into different types and studgponding avalanche structure. The sandpile is constructed
the separate scaling of their size with the system size. Thisver a one-dimension&lD) domain. This domain is divided
leads to an explanation of the breakdown of the exact selfinto L cells that are evolved in steps. The number of sand
similarity of the sandpile dynamics. grains in a cell ish;, called the height of ceil. We take as
The rest of the paper is organized as follows. In Sec. llyadial position the valueé that identifies the cell. The local
we introduce the sandpile model. In Sec. Ill, we discuss a@radient isZ;, the difference betweel, andh; ., ;, andZ;
classification of the avalanches based on their space-tims the critical gradient. The sandpile evolution is governed by
structure. We introduce a simple model for avalanches irthe following simple set of rules.

Il. SANDPILE MODEL
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(1) We add a grain of sand at a randomly selected position 20 . : L
i "R . ; .
hi=h;+1. (1) 15 B A
No more sand is added while an avalanche is in progress. T
(2) Next, all the cells are checked for stability against a P
simple stability rule and either flagged as staldles Z,;; or 3 10 4
not stableZi=2Z;;. : ‘
(3) Finally, the cells are time advanced, with the unstable L /
cells overturning and moving their excess grains to another 51 T
cell. That is, ifZ;=Z., then ;
hi = hi - Nf s 0 L v T
20 PR |
hi+1=hj+1+ Ny, 2 ®) i |- T -
whereNs is the amount of sand that falls in an overturning 151 L V
event. R TN T
We have modified rulg(1l) from previous studieg3], N T
where grains of sand were dropped with a given probability = : . N
Po. To study the properties of the avalanches, such as the & A I N\
size and duration, it is useful to go to the limit of completely L1 AN
separated avalanches. That is, the case when0. To reach i
this limit, we change this rule. 5 *
I1l. SPACE-TIME AVALANCHE STRUCTURE "
An avalanche can be characterized by several parameters. 2(()) . '
One is its lengtH, which is the number of cells affected by Q)
the avalanche. Another is its duratidnthe number of time T
steps taken by the avalanche to run through the system. A 5 | f >
third parameter is its siz&, which is the total number of . :
overturning events during the avalanche. All of these are Al
measurable quantities that can be used in the determination « o
of the space-time structure of the avalanches. To determine 3 10 7
how these parameters relate to the avalanche structure, it is T i
useful first to visualize them. In this way, we identify the ! i N1+
structures that we want to characterize. 5
A way of visualizing the avalanches in a running sandpile
is to construct a two-dimension&D) grid with the X axis AT
being time and th& axis being cell position. In this grid, we 0 . Y : 1?0 B "

can mark the position and time of each overturned event. In
Fig. 1, we show three examples of these types of plots. In
looking at such a plot, we can classify the avalanche struc-
ture in three distinct ways. FIG. 1. 2D plot of overturn event&lots with the X axis being
(1) The 1D avalanches. A 1D avalanche is a simpletime and theY axis the cell position{a) an example of 1D ava-
straight line in the space-time plot. An example is shown inl@"che.(b) an example of 2D avalanche with no flux out, 4op2D
Fig. 1(a). For these avalanches, their length, duration, andalanche with flux out of the sandpile.
size are equal:=T=S. These avalanches can cause internal . . .
transport within the pile, or they can also cause transport odf 2 simple relation between these parameters and the size
of the pile when they reach the edge. Reaching the edge dog_ d the length of the avalanche. For these avalandhes,
not change the structure of the avalanche, it only limits its™
length. The amount of flux transported out is obviously.

(2) The 2D avalanches with no flux out. An example is

Time

Then, in terms of the new parameters, the avalanche du-
ration and size are as follows:

shown in Fig. 1b). In the space-time plane, these avalanches T=To+n—1, 3
have a rectangular shape. To better characterize its shape, it
is useful to introduce two new parameters. They are the two S=nTy=n(T—-n+1). (4)

sides of the rectangl®, and T, as defined in Fig. (b). By
convention, we denote by the shortest sidey<T,. There  From these relations, we can calculate the paranmeser
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n=1[T+1-(T+1)7—43]. ) IV. PROBABILITY OF AN AVALANCHE FOR A GIVEN
VALUE OF n

This is a useful parameter to classify the 2D avalanches.
When we measure the size and the duration of an avalanch
Eq. (5) provides a way of testing the structure. To be a 2D
avalanche without flux outp must be an integer. Note that
Eq. (5) works also for 1D avalanches, there is a maximum
and a minimum value of the avalanche size. They are

To better understand the distribution of avalanches with
Sitferent n values, we consider a very simple statistical
model for the avalanches. This model is not going to provide
an explanation of the PDF of and S because it does not
incorporate correlation effects that are essential in the gen-
eration of the algebraic tails. However, it is a useful model to
Sou=n(L+1-n) understand some proper_ties of those probability distributions.
ax ’ Let p, be the probability for a cell to be unstable whdn
grains of sand are added to this cell. This means that an
avalanche reaching this cell has a probabifityof continu-
ing its propagation. Here, we assume that this probability
does not depend on the position of the cell. This implies the
neglect of radial correlation, which in reality is important. If

example of such an avalanche is shown in Fig).1The a cell is unstable to the addition bl grains, this means that

space-time structure of these avalanches is somewhat diffefl€ 10cal slope hadl; possible valuesz=Z=Z.—N;+1.

ent from the previous one and so are the relations betweefy¢ know [11] that thoseN; states are probably approxi-
the main parameters. mately equal. Therefore, the probability of the slope having a

In this case]=T,. The expression for the duratidnis given value in this range ip,/Ny. Converselyp,=1—p,

the same as Eq3), but the avalanche size in terms rofs is the probability for a cell to be stable whéd grains are
given by added. A cell stable to the addition Nf; grains of sand is a

stopping position for the avalanche. Let us also assume that
S=n(T+1-n)—in(n-1). 7 pa is the probability of starting an avalanche, guglis prac-
tically independent of the cell position. Numerical calcula-
This leads to the following expression foin terms ofSand  tions show a very flat distribution of the starting positions of

Siin= 7. (6)

These values correspond o=1=L and n=T,, respec-
tively.
(3) The 2D avalanches with flux out of the sandpile. An

T: the avalanches. We will discuss later the form of this prob-
ability.
n=1[T+2— /(T+ 3)2_gg]. (8) Within the framework of this model, we can now evaluate

the probability of am=1 avalanche starting in cell To be

Again, the value of must be an integer. The flux out of the @ N=1 avalanche, either thet 1 ori—1 cells must be a
sandpile is',,=nN; . Therefore, using Eq$8) and(5), we  Stopping point. Therefore, the probabili§(1) of such an
can determine whether the avalanche has flux out and calc@valanche is
late the value of the flux.
For these avalanches, the maximum and minimum value P(1)=pa(2p1p,+p3)=pa(1—pd). (10
of their size for a fixech are
Although this estimate seems correct, there is one impor-

n tant point that we have not taken into account. An avalanche
Smax=n| L+1- E)’ starts when a grain of sand is dropped on a geduch that
Z;=Z.. The addition of a grain at positiarchanges also the
n(n+1) sandpile slope at positioin- 1, which is reduced by 1. This
N~ 5 - ) change of slope implies that the ce#t 1 can only be in one

of the N;—1 states in the rangé.,=Z=Z.—N;+ 1. There-

In comparing Eqs(6) and(9), we see that the maximum size fore, the probability for the cell—ul to be unstable is r.eally
of the avalanches that produces a flux out of the pile can bB1(1—1/Ns), and the probability to be stable ip,
larger than the maximum size of the internal avalanches. It is” P1/N . The estimate given by Eq10) must be changed
interesting to compare the boundaries defined by Egs. (0 account for this effect. The result is

and(9) for a given sandpile size. The largest avalanches are

those starting near the edge and penetrating all the way to the P(1)=pa[1—pi(1-1Np)]. (11
top of the piles. These avalanches also produce the maximum

flux out. These avalanches are the more resilient ones to From this expression, we trivially estimate the fraction of
additional effects such as diffusid@,10]. n=1 avalanches dividing®(1) by pa. Note that forN;

In what follows, we will study the scaling of avalanches =1, this fraction is 1, as it should be. This expression for the
with no flux out. The ones with flux out occur close to the fraction of 1D avalanches agrees very well with the numeri-
boundary, and they are a very small fraction of the totalcal results. In Fig. 2, we plotted, as a function of 1/N;,
number of the avalanches. They only affect the PDFs fothe fraction of 1D avalanches obtained in a sequence of nu-
very large values of the events. We will consider them in themerical calculations for different values &f;. For these
last section dedicated to boundary effects. calculations, we have used dn=1600 sandpile withZ,
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FIG. 2. Fraction of n=1 avalanches as a function of

1—1/N;.

=10. A linear fit to the numerical results gives a value figr

of about 0.9. We will see later how this value scales with
We can now carry out similar calculations for each value

of n>1 and obtain the probability distribution of avalanches

with a givenn>1 value. In doing so, we obtain

P(n)=pa(1—1Ng)(1-p7)ps" Y. (12)
Adding n over all, we have
NMax
2 P(M)=pal1=(1=IN)p;™]~pa, (13

as expected.
Using the obtained value @ff=0.9, we can compare the
fraction of avalanches with a given value mthat we have

[ Nf=2

10°

—N;=2 Model

| ] Nf=3
---Nf=3 Model 1
* Nf=4

10! ]
~===-N =4 Model

Probability distribution

102

FIG. 3. Comparison of the model with the numerical results for
low values ofn.
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FIG. 4. Comparison of the model with numerical results for two
different sandpile lengthga) L =200 and(b) L =3200.

obtained in numerical calculations with the model just dis-
cussed. We can see in Fig. 3 that there is good agreement.
This model accounts for the significant difference between
the 1D avalanches and the 2D ones. This asymmetry is
caused by the change of the probabilities in the icell as
discussed above.

The agreement between numerical results and the analyti-
cal model changes for highvalues. Equatioril2) can sim-
ply be rewritten in the following way:

P(n)=pa(1—1Np)(1—pHexd (n—1)In(p)]. (14)

This expression shows that for highvalues, the probability
decays exponentially witln. Such a high tail is surpris-
ingly consistent with the numerical results for a small sand-
pile, with L<300. However, for larger sandpiles, there is a
clear discrepancy at high. An algebraic tail seems to be
developing at the higim values. The model discussed here
cannot describe such a tail, because it ignores correlations
that are the dominant effect in creating large events. A com-
parison of the model with the numerical data for largés
given in Fig. 4 for two sizes of the sandpile=200 andL
=3200.

In comparing the model to the data, we haveas a free
parameter. This parameter can be determined by the fraction

2-4
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100 | | (T+1)/2
—1-p2=144 L% Po(T)= 2 Po(n,T). (15)
“~In(p,) = 1.86 L0 -

A similar thing can be done for the probabiliyg(S) of
avalanches of siz§,

XS
F>S<S>=n§l P«(n,S). (16)

Note that in this sum, for a fixed value &not all n’s can
contribute;S must be divisible by the values of contribut-

——1p? ing to the sum. For the componerig(n,T) when summing
) . : 4
over all possible values of the avalanche duration for a fixed
'D'-ln(p12) n, we should recover the probability of an avalanche with
102 1 1 this given value of,
10 10° 1 10* 10°

L
P()=_2, Po(nT). (17
FIG. 5. Scaling ofp, with the size of the sandpile. -

) ) Similarly when we sunPg(n,S) over all avalanche sizes for
of 1D avalanches, as discussed above, or by a fit to thenlow-3 fixedn, we have

region of theP(n). The results are not very sensitive to the

method of determination gf,. In whatever way we use to n(L+1-n)
determinep,, the value of this parameter scales with the size P(n)= >  P«n,9). (18
of the sandpile. This scaling is shown in Fig. 5. Becapsge S=n?

is always close to 1 and the changes wlittare small, we
2 2 :
have plotted *p; and Iny) as a function oL.. Both have /it is worthwhile to use it in evaluations of the different

very similar values becaugg is close to % and thzey scale as prohability functions just defined. We begin by evaluating
a fractional power ol.. Taking 6= —In(p})~1—p; and for  the probability of avalanches with a fixed valueroaind T,

In spite of the limited value of the model described in Sec.

0<1, we can rewrite Eq(14) as ornandS To do so, it is easier to first calculate the prob-
ability of an avalanche with a givem and T, value,
P(n,8)=P(n)~pa(1—-1/N¢)dexgd —(n—1)d] P(n,Ty). We follow the same approach as before, by evalu-

ating at each step the probability for the avalanche growing
or stopping. For am=1 avalanche, the probability of having

) ) ) ) ) a lengthT, is
Becaused has a simple scaling with size, this suggests the

existence of a self-similar transformation that accounts for P(l,T0)=pA[o(1—pl)(l—1/Nf)+1/Nf]pI°71p2.

the finite-size effects. (19)
Although we have assumed in the analytical model that

there are no radial correlations, in reality there are. We carThe p, term indicates that afteF, steps, the avalanche stops

calculate the correlation of the slope of the sandpile at difat the up or down propagation. We can similarly calculate the

ferent radial positions{Z;Z;). What we observed is that corresponding probability fon#1 avalanches as

(ZiZj)~5ij+Ce_‘xi_XiW, with the exponential tail being

different for left and right. The coefficient is always less P(n,TO):(rpA(l—1/Nf)p2’1p1071p§. (20

than 0.3, therefore, the correlations are weak. Nevertheless,

the correlations are not negligible. The correlation length The factoro is 1 for To=n and is equal to 2 for all other

scales with the size, £~0.2.°% and seems to be indepen- values ofT,. For a givenn, there is a unique relation be-

dent of N;. This information on the radial correlation of the tweenT, andT or S Therefore, we can automatically calcu-

slope is not included in the model, but in fitting the numeri-late the probability for an avalanche with givarto have a

= 6G[(n—1)4].

cal results it is reflected in thp; dependence oh. durationT or a sizeS. We do that by just substituting, for
its expression in terms of or Sinto the previous equations.
V. PROBABILITY OF AVALANCHES WITH A GIVEN Iiorihenil avalanches, the changes are trivial becduse
DURATION OR SIZE =T=S, then

Let Po(T) be the probability of avalanches with duration Po(1,T)=pal2(1—p1)(1—1/Ng)+ 1N¢Ip; *p,,
T. Here we are still considering only avalanches with no flux
out. We can decompose this function as a sum over the prob- Pg(1,S)=pa[2(1—p1)(1—1/N;s)+ 1/Nf]pf‘1p2,
abilities of avalanches with duratiohand indexn, (22

011302-5



CARRERAS, LYNCH, NEWMAN, AND SANCHEZ PHYSICAL REVIEW E56, 011302 (2002

whenT=S>1. For the 2D avalanches with no flux out, we 102 r r
use Egs.(3) and (4) to relateT, to T and S respectively. F(D=Alj(1+T/WT)°‘
WhenT>2n, S>n?, andn#1, 10
Po(n,T)=2pa(1-1N)p; 'p3, (22 = 10°
n+S/n—-2,.2 S:
Ps(n,S)=2pa(1—1/N¢)p; P2 (23 a2 10°
From Eqg.(15), we can now calculate the probability of .
avalanches of duratio, 107 F
Po(T)=paP; (1= p)[LN;+T(1-1Ng)(1-py)], 107
(24 10°

and the probability of avalanches with si3e ) o )
FIG. 6. Function describingp(n,T) for different values oh.

Ps(S)=0papaf [2(1—py)(1— 1IN+ 1N]p;*

n’+Ss
Ps(n,S)zF( = ) (28

Js

+2(1-p)(1-1Ng) X pa‘*y“]. (25)

N=Nmin

If these relations are true, in general, they imply that the
knowledge of the functiof gives all the information needed

There is not a compact expression that can be derived farn the probabilities of the 2D avalanches. This does not ex-
Eq. (25) for all values ofS However, it is possible to derive tend to the 1D avalanches, which have a different functional
an asymptotic form foS>1/|In p|, dependence. Note that the generic normalization conditions
from Eq. (17) suggest that such a relation should be true.

Py(S)~ PAP2H2p2<1_ 1 N 1 oSy ~We can directly test Eq(27) using numerical results. In
Py N/ = N{ Fig. 6, we have plottedP(n,T) for different values ofn.
The calculation is for al. = 3200 sandpile witiN;=3. We
N P2 1—1/Ng /S pl] (26) can see that all curves fall on top of each other defining the
p: |Inp4 ' function F(T). This function is well described through a

simple function as shown in the figure with a power tail
The first term in Eq.(26), the contribution from 1D ava- exponenta=4=1.5. Having identified this functiof, we
lanches, depends d8|In p,|, while the second term, contri- can evaluate the distributid?(n) of avalanches for different
bution of the 2D avalanches, depends ¢l Inp,|. We can  n. From Eq.(17),
see that it is not possible to use a single combination of the

variablesS and Inp, that gives the dependence of the overall L
function. Therefore, the probability of the avalanches with P(n)= E F(T). (29)
size Sis not a self-similar function. The different depen- T=2n-1

dences of the 1D and 2D avalanches is the cause of the

breakdown of self-similarity. Because E(R6) is only an 107!
asymptotic form for the functioiPg(S), it is not clear that XTH
the separate functions for the 1D and 2D avalanches are ex- ”
actly self-similar. There it may be nonasymptotic terms that 10
cause a weak breaking of the individual self-similarity.

The probabilitiesP(T) and P¢(S) have an exponential 103 k -
tail for large SandT. This dependence does not agree with
the numerical calculations, but some of the properties of
these functions may have a more general relevance. 10* F 7

There is another interesting property of these probabili-
ties. The probability for an avalanche with a given value of 10° k
n+#1 to have a duratiof is independent of the value of
That is, forn#1,

P(n)

L
-l'.

o From Eq. (29)
= Numerical
1

10
Pp(n,T)=F(T). (27) 10° 10! 10? 10°

n

This property has allowed us to find a compact expression,
Eq. (24), for the probability of avalanches with duratidn FIG. 7. Comparison of E¢29) with P(n) from the numerical
Another consequence of this relation is results.
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10% e T ..l e 10! . . '
(a)
10! = E
10°F 3 ;
@ 10-1 - -
a” N
3, 107 =
—L =200
5[ — "L=400 10
107 F ==-1L =800
..... L = 1600 TILY?
4| ==-=L=3200
107 F e L = 6400 FIG. 9. PDF of the size of the 1D avalanches.
— L =12800
107 | 1y | of th_e avalanche size oh is not a simple self-similarity
10 10?7 10?7 107 100 10" 102 relation, as
102 ——rr [ e PS(S,L)ZL‘Bp(S/La). (30)
(b
It is a multifractal fit that best describes the numerical
__'_;a:, data. In this section, we analyze how this multifractal depen-
—p? dence may appear. The lack of self-similarity is evidenced in
10! .- Fig. 8, where we have plotted th®y(S,L) for the different
3 sandpile lengths considered in this study. We have chosen the
2 exponenta to get a good alignment of the tails of the PDFs
N [Fig. 8@]. Then, by looking at the PDF for small values of
o S/L* [Fig. 8b)] we see a systematic deviation from self-
= ——1. =200 similarity. This is not surprising. From the analytical study
100 - ~8-L =400 that we presented in the preceding section Ltfteependence
-&-L =800 in Pg(S,L) is coming through the parametpi. As we ob-
[ _:Lf 1288 tained in Eq/(26), there is no self-similarity oPs(S,L). The
—~--i;2400 only possible way of recovering the self-similar properties is
—= . = 12800 by separating irPg(S,L) the contribution of the 1D and 2D
10-1 el " — avalanches. We can do so with the numerical results.
1074 1073 102 10! 10° First, let us consider the PDF of the duration or size of the

on 09 n=1 (1D) avalanches. We can see in Fig. 9 that this PDF is
self-similar under a transformation of the type in Eg9)

FIG. 8. PDF of the avalanche size for different lengths of theyith a=B=0.5. Since these PDFs have been normalized to
sandpile:(2) the full PDF and(b) PDF for small values oL 1 = g For all the sizes of the sandpiles considered, all
showing the lack of self-similarity. points of the PDF fall on top of the same curve.

For the 2D @+ 1) avalanches, the PDFs of the avalanche
In Fig. 7, we compare th®(n) calculated from Eq(29)  sjze are self-similar but with an exponest 8= 0.85. This
wit.h the directly evaluated®(n) from the numerical calcu- s shown in Fig. 10 for sandpile sizes varying fram 200
lation. to 12 800. The scaling exponent is completely different from
the scaling of the PDF of the avalanche size for el
VI. FINITE-SIZE SCALING avalanchesFig. 9. The analyti_ca_l model gives a factor of 2 _
between these exponents. This is not the case of the numeri-

We have examined the probability of avalanches of acal results. This discrepancy is not surprising because in the
given duration or size. Now we turn to the dependence otletermination of these exponents in the self-similarity trans-
these probabilities on the size of the sandpile. Because w@rmation, tails of the PDFs dominate and we know that the
use a numerical scheme fpp— 0 in order to avoid ava- analytical model fails in giving those tails.
lanche overlap, we cannot calculate the probability of an When we consider the 1D and 2D avalanches separately
avalanche of a given size or duration. Instead of the proband for different values of the sandpile size, their PDFs seem
ability, we evaluate the PDF of the avalanche size and durao be self-similar. However, since we based the analysis on
tion. The PDFs are equivalent to the probabilities, but theyhnumerical results only, it is not possible to prove that the
are normalized to 1 instead of being normalized to the freself-similarity is exact. However, if it is not exact, the sym-
qguency of the avalanches. metry breaking effects are small for the range of sandpile

From Ref.[5], we know that the dependence of the PDFlengths considered here.
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Another important issue to consider for the breakdown of
the strict self-similarity of the avalanche PDFs is the role
played by the avalanches that cross the edge of the sandpile.
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FIG. 10. PDF of the size of the 2D avalanches.
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These avalanches are a small portion of the total number of

avalanches, but they can modify the tail of the PDF because
this class of avalanches includes the longest ones. The fra

FIG. 12. Radial distribution of the starting points of the ava-
E;l_nches going through the edge boundary.

tion of avalanches with flux out of the sandpile decreases as

a fractional power of the sizé. This dependence ik is
shown in Fig. 11. These avalanches with flux out of the
sandpile mostly start close to the edge. In Fig. 12 we hav?an
plotted the radial distribution of the starting points of the
avalanches going through the edge boundary. Most of thesg
avalanches start within 3% of the radius from the edge
These are mostin=1 avalanches. Avalanches with# 1
can start deep inside the sandpile, but the probability falls o
exponentially from the edge. The width of the exponential
can be considered as a measure of the edge region of tl?
sandpile. From these data, we have determined that the n
malized width scales a@//L=0.64.~ 3. Therefore, as the
size of the sandpile increases, this edge region becomes relg,[—
tively less important and so has its effect on the overall con-
tribution to the PDF.

Fraction of Avalanches with Flux Out of the Sandpile
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VII. CONCLUSIONS

In the sandpile model, the existence of two types of ava-
ches with different space-time structures causes a break of
the self-similarity of the PDFs. The scaling of the avalanche
size withL is different for the 1D and 2D avalanches. There-
fore, when the scaling is studied with the combined effect of
fBOth types of avalanches, the effective scaling exponents
ary with the parameter of the system. However,Lag-
creases, the 2D avalanches tend to become dominant, and in
Oﬁe limit of infinite size, the scaling exponent should be
Jiven by the scaling of these avalanches.
The different dependence dancomes through the param-
er p,, the probability for a cell to be unstable whéh
grains of sand are added to this cell. This parameter carries
the information on the correlation length of the sandpile
slope, and through this the correlation length knows about
the sandpile size.

There are also boundary effects. Those effects became
smaller as the size of the sandpile increased, but the decrease
of the effects goes as a fractional powerlofof about—3.
Therefore, it is necessary to go to relatively large sandpile
sizes to minimize those effects. In reality, they never disap-
pear and they can become quite important when other dy-
namical effects, such as diffusid®,10], are added to the
sandpile dynamics.
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