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Avalanche structure in a running sandpile model
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The probability distribution function of the avalanche size in the sandpile model does not verify strict
self-similarity under changes of the sandpile size. Here we show the existence of avalanches with different
space-time structure, and each type of avalanche has a different scaling with the sandpile size. This is the main
cause of the lack of self-similarity of the probability distribution function of the avalanche sizes, although the
boundary effects can also play a role.
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I. INTRODUCTION

Many systems in nature are governed by self-organi
criticality ~SOC! @1#. In such systems, relaxation and tran
port processes occur through events~avalanches! of all sizes.
Because all systems have a finite size, an important issu
how transport scales with the system size. An example
emphasizes this point is the case of magnetically confi
plasmas. In some regimes, plasma transport seems to be
erned by SOC@2,3#. Therefore, to determine the size of
power-producing plant based on fusion reactions, we m
know the scaling of plasma transport with system size.
portant economic consequences are attached to the acc
of this scaling.

If the system dynamics has exact self-similar propert
the probability distribution function~PDF! of the event size
S, for varying system sizeL, verifiesP(S,L)5LbF(S/La).
This is the simplest form of scaling with system size. Ho
ever, even the simpler SOC models, such as the sandpil@1#
or the forest-fire model@4#, do not obey exact self-similarity
@5,6#. Multifractal scaling laws have been found to bett
describe the finite-size scaling of the numerically evalua
PDFs in the sandpile model@5#. In Refs. @6,7#, it has been
found that the breakdown of the exact self-similarity of t
forest fire was caused by the different spatial structure of
fires. The forest-fire model has two qualitatively differe
fires that superimpose to give the effective exponents m
sured in numerical calculations.

Here, we consider the sandpile model and explore
possible structures of the avalanches. In this case, we
sider the space-time structure of the avalanches. This all
us to classify the avalanches into different types and st
the separate scaling of their size with the system size. T
leads to an explanation of the breakdown of the exact s
similarity of the sandpile dynamics.

The rest of the paper is organized as follows. In Sec.
we introduce the sandpile model. In Sec. III, we discus
classification of the avalanches based on their space-
structure. We introduce a simple model for avalanches
1063-651X/2002/66~1!/011302~9!/$20.00 66 0113
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Sec. IV. This model ignores space correlations and as a re
cannot reproduce the tail of the probability functions, b
some insight is given into their parametric dependences
Sec. V, we calculate the probability of avalanches with
given size or duration on the basis of the model. The sca
of these PDFs with the sandpile size and the effect of
boundary are discussed in Sec. VI. Finally, in Sec. VII, w
present the conclusions of this paper.

II. SANDPILE MODEL

The sandpile model has been suggested as a paradigm
SOC turbulent plasma transport in magnetic confinement
vices @2,3#. The sandpile model has the instability gradien
represented by the slope of the sandpile, while the turbu
transport is modeled by the local amount of sand that f
~overturns! when the sandpile becomes locally unstable.
random ‘‘rain’’ of sand grains drives the sandpile. This dri
models the input power/fuel in the confinement system. T
sandpile model allows us to study the dynamics of the tra
port independent of both the local instability mechanism a
the local transport mechanism.

The PDF of the transport events is one of the measura
quantities, and the experimentally measured ones can
compared to theoretical expectations. Even in the sim
sandpile model, the finite-size scaling of the PDFs is co
plicated and has a multifractal character@5#. Therefore, it is
important to understand the underlying structure of the a
lanches that causes the multifractal nature of the scaling

Here, we use a standard cellular automata algorithm@5,8#
to study the dynamics of the driven sandpile and the co
sponding avalanche structure. The sandpile is constru
over a one-dimensional~1D! domain. This domain is divided
into L cells that are evolved in steps. The number of sa
grains in a cell ishi , called the height of celli. We take as
radial position the valuei that identifies the cell. The loca
gradient isZi , the difference betweenhi andhi 11 , andZcrit
is the critical gradient. The sandpile evolution is governed
the following simple set of rules.
©2002 The American Physical Society02-1
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~1! We add a grain of sand at a randomly selected posi
i,

hi5hi11. ~1!

No more sand is added while an avalanche is in progr
~2! Next, all the cells are checked for stability agains

simple stability rule and either flagged as stable,Zi,Zcrit or
not stable,Zi>Zcrit .

~3! Finally, the cells are time advanced, with the unsta
cells overturning and moving their excess grains to ano
cell. That is, ifZi>Zcrit , then

hi5hi2Nf ,

hi 115hi 111Nf , ~2!

whereNf is the amount of sand that falls in an overturni
event.

We have modified rule~1! from previous studies@3#,
where grains of sand were dropped with a given probab
p0 . To study the properties of the avalanches, such as
size and duration, it is useful to go to the limit of complete
separated avalanches. That is, the case whenp0→0. To reach
this limit, we change this rule.

III. SPACE-TIME AVALANCHE STRUCTURE

An avalanche can be characterized by several parame
One is its lengthl, which is the number of cells affected b
the avalanche. Another is its durationT, the number of time
steps taken by the avalanche to run through the system
third parameter is its sizeS, which is the total number o
overturning events during the avalanche. All of these
measurable quantities that can be used in the determina
of the space-time structure of the avalanches. To determ
how these parameters relate to the avalanche structure,
useful first to visualize them. In this way, we identify th
structures that we want to characterize.

A way of visualizing the avalanches in a running sandp
is to construct a two-dimensional~2D! grid with theX axis
being time and theY axis being cell position. In this grid, we
can mark the position and time of each overturned even
Fig. 1, we show three examples of these types of plots
looking at such a plot, we can classify the avalanche str
ture in three distinct ways.

~1! The 1D avalanches. A 1D avalanche is a sim
straight line in the space-time plot. An example is shown
Fig. 1~a!. For these avalanches, their length, duration, a
size are equal:l 5T5S. These avalanches can cause inter
transport within the pile, or they can also cause transport
of the pile when they reach the edge. Reaching the edge
not change the structure of the avalanche, it only limits
length. The amount of flux transported out is obviouslyNf .

~2! The 2D avalanches with no flux out. An example
shown in Fig. 1~b!. In the space-time plane, these avalanc
have a rectangular shape. To better characterize its sha
is useful to introduce two new parameters. They are the
sides of the rectangle,n andT0 , as defined in Fig. 1~b!. By
convention, we denote byn the shortest side,n<T0 . There
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is a simple relation between these parameters and the
and the length of the avalanche. For these avalanchel
5T.

Then, in terms of the new parameters, the avalanche
ration and size are as follows:

T5T01n21, ~3!

S5nT05n~T2n11!. ~4!

From these relations, we can calculate the parametern as

FIG. 1. 2D plot of overturn events~dots! with the X axis being
time and theY axis the cell position:~a! an example of 1D ava-
lanche,~b! an example of 2D avalanche with no flux out, and~c! 2D
avalanche with flux out of the sandpile.
2-2
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n5 1
2 @T112A~T11!224S#. ~5!

This is a useful parameter to classify the 2D avalanch
When we measure the size and the duration of an avalan
Eq. ~5! provides a way of testing the structure. To be a
avalanche without flux out,n must be an integer. Note tha
Eq. ~5! works also for 1D avalanches,n, there is a maximum
and a minimum value of the avalanche size. They are

Smax5n~L112n!,

Smin5n2. ~6!

These values correspond toT5 l 5L and n5T0 , respec-
tively.

~3! The 2D avalanches with flux out of the sandpile. A
example of such an avalanche is shown in Fig. 1~c!. The
space-time structure of these avalanches is somewhat d
ent from the previous one and so are the relations betw
the main parameters.

In this case,l 5T0 . The expression for the durationT is
the same as Eq.~3!, but the avalanche size in terms ofn is
given by

S5n~T112n!2 1
2 n~n21!. ~7!

This leads to the following expression forn in terms ofSand
T:

n5 1
3 @T1 3

2 2A~T1 3
2 !226S#. ~8!

Again, the value ofn must be an integer. The flux out of th
sandpile isGout5nNf . Therefore, using Eqs.~8! and~5!, we
can determine whether the avalanche has flux out and ca
late the value of the flux.

For these avalanches, the maximum and minimum va
of their size for a fixedn are

Smax5nS L112
n

2D ,

Smin5
n~n11!

2
. ~9!

In comparing Eqs.~6! and~9!, we see that the maximum siz
of the avalanches that produces a flux out of the pile can
larger than the maximum size of the internal avalanches.
interesting to compare the boundaries defined by Eqs.~6!
and~9! for a given sandpile size. The largest avalanches
those starting near the edge and penetrating all the way to
top of the piles. These avalanches also produce the maxim
flux out. These avalanches are the more resilient one
additional effects such as diffusion@9,10#.

In what follows, we will study the scaling of avalanche
with no flux out. The ones with flux out occur close to th
boundary, and they are a very small fraction of the to
number of the avalanches. They only affect the PDFs
very large values of the events. We will consider them in
last section dedicated to boundary effects.
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IV. PROBABILITY OF AN AVALANCHE FOR A GIVEN
VALUE OF n

To better understand the distribution of avalanches w
different n values, we consider a very simple statistic
model for the avalanches. This model is not going to prov
an explanation of the PDF ofT and S because it does no
incorporate correlation effects that are essential in the g
eration of the algebraic tails. However, it is a useful mode
understand some properties of those probability distributio

Let p1 be the probability for a cell to be unstable whenNf
grains of sand are added to this cell. This means that
avalanche reaching this cell has a probabilityp1 of continu-
ing its propagation. Here, we assume that this probab
does not depend on the position of the cell. This implies
neglect of radial correlation, which in reality is important.
a cell is unstable to the addition ofNf grains, this means tha
the local slope hasNf possible values,Zc>Z>Zc2Nf11.
We know @11# that thoseNf states are probably approx
mately equal. Therefore, the probability of the slope havin
given value in this range isp1 /Nf . Conversely,p2512p1
is the probability for a cell to be stable whenNf grains are
added. A cell stable to the addition ofNf grains of sand is a
stopping position for the avalanche. Let us also assume
pA is the probability of starting an avalanche, andpA is prac-
tically independent of the cell position. Numerical calcul
tions show a very flat distribution of the starting positions
the avalanches. We will discuss later the form of this pro
ability.

Within the framework of this model, we can now evalua
the probability of ann51 avalanche starting in celli. To be
a n51 avalanche, either thei 11 or i 21 cells must be a
stopping point. Therefore, the probabilityP(1) of such an
avalanche is

P~1!5pA~2p1p21p2
2!5pA~12p1

2!. ~10!

Although this estimate seems correct, there is one imp
tant point that we have not taken into account. An avalan
starts when a grain of sand is dropped on a celli, such that
Zi5Zc . The addition of a grain at positioni changes also the
sandpile slope at positioni 21, which is reduced by 1. This
change of slope implies that the celli 21 can only be in one
of the Nf21 states in the rangeZc>Z>Zc2Nf11. There-
fore, the probability for the celli 21 to be unstable is really
p1(121/Nf), and the probability to be stable isp2
1p1 /Nf . The estimate given by Eq.~10! must be changed
to account for this effect. The result is

P~1!5pA@12p1
2~121/Nf !#. ~11!

From this expression, we trivially estimate the fraction
n51 avalanches dividingP(1) by pA . Note that forNf
51, this fraction is 1, as it should be. This expression for
fraction of 1D avalanches agrees very well with the nume
cal results. In Fig. 2, we plotted, as a function of 121/Nf ,
the fraction of 1D avalanches obtained in a sequence of
merical calculations for different values ofNf . For these
calculations, we have used anL51600 sandpile withZc
2-3
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510. A linear fit to the numerical results gives a value forp1
2

of about 0.9. We will see later how this value scales withL.
We can now carry out similar calculations for each va

of n.1 and obtain the probability distribution of avalanch
with a givenn.1 value. In doing so, we obtain

P~n!5pA~121/Nf !~12p1
2!p1

2~n21! . ~12!

Adding n over all, we have

(
1

nMax

P~n!5pA@12~121/Nf !p1
2nMax#'pA , ~13!

as expected.
Using the obtained value ofp1

250.9, we can compare th
fraction of avalanches with a given value ofn that we have

FIG. 3. Comparison of the model with the numerical results
low values ofn.

FIG. 2. Fraction of n51 avalanches as a function o
121/Nf .
01130
obtained in numerical calculations with the model just d
cussed. We can see in Fig. 3 that there is good agreem
This model accounts for the significant difference betwe
the 1D avalanches and the 2D ones. This asymmetry
caused by the change of the probabilities in the celli 11 as
discussed above.

The agreement between numerical results and the ana
cal model changes for high-n values. Equation~12! can sim-
ply be rewritten in the following way:

P~n!5pA~121/Nf !~12p1
2!exp@~n21!ln~p1

2!#. ~14!

This expression shows that for highn values, the probability
decays exponentially withn. Such a high-n tail is surpris-
ingly consistent with the numerical results for a small san
pile, with L,300. However, for larger sandpiles, there is
clear discrepancy at highn. An algebraic tail seems to b
developing at the highn values. The model discussed he
cannot describe such a tail, because it ignores correlat
that are the dominant effect in creating large events. A co
parison of the model with the numerical data for largen is
given in Fig. 4 for two sizes of the sandpile,L5200 andL
53200.

In comparing the model to the data, we havep1 as a free
parameter. This parameter can be determined by the frac

r

FIG. 4. Comparison of the model with numerical results for tw
different sandpile lengths:~a! L5200 and~b! L53200.
2-4



w
e

iz

s

th
fo

ha
ca
di
t

le
gt
-
e
ri

n
u
ro

ed
ith

r

c.
t

ng

b-

lu-
ing
g

s
the

r
-
-

.

AVALANCHE STRUCTURE IN A RUNNING SANDPILE MODEL PHYSICAL REVIEW E66, 011302 ~2002!
of 1D avalanches, as discussed above, or by a fit to the lon
region of theP(n). The results are not very sensitive to th
method of determination ofp1 . In whatever way we use to
determinep1 , the value of this parameter scales with the s
of the sandpile. This scaling is shown in Fig. 5. Becausep1
is always close to 1 and the changes withL are small, we
have plotted 12p1

2 and ln(p1
2) as a function ofL. Both have

very similar values becausep1 is close to 1 and they scale a
a fractional power ofL. Taking d[2 ln(p1

2)'12p1
2 and for

d!1, we can rewrite Eq.~14! as

P~n,d![P~n!'pA~121/Nf !d exp@2~n21!d#

5dG@~n21!d#.

Becaused has a simple scaling with size, this suggests
existence of a self-similar transformation that accounts
the finite-size effects.

Although we have assumed in the analytical model t
there are no radial correlations, in reality there are. We
calculate the correlation of the slope of the sandpile at
ferent radial positions,̂ ZiZj&. What we observed is tha
^ZiZj&'d i j 1ce2uxi2xj u/,, with the exponential tail being
different for left and right. The coefficientc is always less
than 0.3, therefore, the correlations are weak. Neverthe
the correlations are not negligible. The correlation len
scales with the sizeL, ,'0.2L0.8, and seems to be indepen
dent ofNf . This information on the radial correlation of th
slope is not included in the model, but in fitting the nume
cal results it is reflected in thep1 dependence onL.

V. PROBABILITY OF AVALANCHES WITH A GIVEN
DURATION OR SIZE

Let PD(T) be the probability of avalanches with duratio
T. Here we are still considering only avalanches with no fl
out. We can decompose this function as a sum over the p
abilities of avalanches with durationT and indexn,

FIG. 5. Scaling ofp1 with the size of the sandpile.
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PD~T!5 (
n51

~T11!/2

PD~n,T!. ~15!

A similar thing can be done for the probabilityPS(S) of
avalanches of sizeS,

PS~S!5 (
n51

AS

PS~n,S!. ~16!

Note that in this sum, for a fixed value ofS not all n’s can
contribute;S must be divisible by the values ofn contribut-
ing to the sum. For the componentsPD(n,T) when summing
over all possible values of the avalanche duration for a fix
n, we should recover the probability of an avalanche w
this given value ofn,

P~n!5 (
T52n21

L

PD~n,T!. ~17!

Similarly when we sumPS(n,S) over all avalanche sizes fo
a fixedn, we have

P~n!5 (
S5n2

n~L112n!

PS~n,S!. ~18!

In spite of the limited value of the model described in Se
IV, it is worthwhile to use it in evaluations of the differen
probability functions just defined. We begin by evaluati
the probability of avalanches with a fixed value ofn andT,
or n andS. To do so, it is easier to first calculate the pro
ability of an avalanche with a givenn and T0 value,
P(n,T0). We follow the same approach as before, by eva
ating at each step the probability for the avalanche grow
or stopping. For ann51 avalanche, the probability of havin
a lengthT0 is

P~1,T0!5pA@s~12p1!~121/Nf !11/Nf #p1
T021p2 .

~19!

Thep2 term indicates that afterT0 steps, the avalanche stop
at the up or down propagation. We can similarly calculate
corresponding probability fornÞ1 avalanches as

P~n,T0!5spA~121/Nf !p1
n21p1

T021p2
2. ~20!

The factors is 1 for T05n and is equal to 2 for all othe
values ofT0 . For a givenn, there is a unique relation be
tweenT0 andT or S. Therefore, we can automatically calcu
late the probability for an avalanche with givenn to have a
durationT or a sizeS. We do that by just substitutingT0 for
its expression in terms ofT or S into the previous equations
For then51 avalanches, the changes are trivial becauseT0
5T5S, then

PD~1,T!5pA@2~12p1!~121/Nf !11/Nf #p1
T21p2 ,

PS~1,S!5pA@2~12p1!~121/Nf !11/Nf #p1
S21p2 ,

~21!
2-5
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whenT5S.1. For the 2D avalanches with no flux out, w
use Eqs.~3! and ~4! to relateT0 to T and S, respectively.
WhenT.2n, S.n2, andnÞ1,

PD~n,T!52pA~121/Nf !p1
T21p2

2, ~22!

PS~n,S!52pA~121/Nf !p1
n1S/n22p2

2. ~23!

From Eq. ~15!, we can now calculate the probability o
avalanches of durationT,

PD~T!5pAp1
T21~12p1!@1/Nf1T~121/Nf !~12p1!#,

~24!

and the probability of avalanches with sizeS,

PS~S!5spAp2H @2~12p1!~121/Nf !11/Nf #p1
S21

12~12p1!~121/Nf ! (
n5nmin

As

p1
n1S/n22J . ~25!

There is not a compact expression that can be derived
Eq. ~25! for all values ofS. However, it is possible to derive
an asymptotic form forS@1/u ln p1u,

PS~S!'
pAp2

p1
H F2p2S 12

1

Nf
D1

1

Nf
GeS ln p1

1
p2

p1

121/Nf

u ln p1u
eAS ln p1J . ~26!

The first term in Eq.~26!, the contribution from 1D ava-
lanches, depends onSu ln p1u, while the second term, contri
bution of the 2D avalanches, depends onASu ln p1u. We can
see that it is not possible to use a single combination of
variablesSand lnp1 that gives the dependence of the over
function. Therefore, the probability of the avalanches w
size S is not a self-similar function. The different depe
dences of the 1D and 2D avalanches is the cause of
breakdown of self-similarity. Because Eq.~26! is only an
asymptotic form for the functionPS(S), it is not clear that
the separate functions for the 1D and 2D avalanches are
actly self-similar. There it may be nonasymptotic terms t
cause a weak breaking of the individual self-similarity.

The probabilitiesPD(T) and PS(S) have an exponentia
tail for largeS andT. This dependence does not agree w
the numerical calculations, but some of the properties
these functions may have a more general relevance.

There is another interesting property of these probab
ties. The probability for an avalanche with a given value
nÞ1 to have a durationT is independent of the value ofn.
That is, fornÞ1,

PD~n,T!5F~T!. ~27!

This property has allowed us to find a compact express
Eq. ~24!, for the probability of avalanches with durationT.
Another consequence of this relation is
01130
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PS~n,S!5FS n21S

n D . ~28!

If these relations are true, in general, they imply that
knowledge of the functionF gives all the information neede
on the probabilities of the 2D avalanches. This does not
tend to the 1D avalanches, which have a different functio
dependence. Note that the generic normalization conditi
from Eq. ~17! suggest that such a relation should be true

We can directly test Eq.~27! using numerical results. In
Fig. 6, we have plottedPD(n,T) for different values ofn.
The calculation is for anL53200 sandpile withNf53. We
can see that all curves fall on top of each other defining
function F(T). This function is well described through
simple function as shown in the figure with a power t
exponenta5461.5. Having identified this functionF, we
can evaluate the distributionP(n) of avalanches for differen
n. From Eq.~17!,

P~n!5 (
T52n21

L

F~T!. ~29!

FIG. 7. Comparison of Eq.~29! with P(n) from the numerical
results.

FIG. 6. Function describingPD(n,T) for different values ofn.
2-6
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In Fig. 7, we compare theP(n) calculated from Eq.~29!
with the directly evaluatedP(n) from the numerical calcu-
lation.

VI. FINITE-SIZE SCALING

We have examined the probability of avalanches o
given duration or size. Now we turn to the dependence
these probabilities on the size of the sandpile. Because
use a numerical scheme forp0→0 in order to avoid ava-
lanche overlap, we cannot calculate the probability of
avalanche of a given size or duration. Instead of the pr
ability, we evaluate the PDF of the avalanche size and d
tion. The PDFs are equivalent to the probabilities, but th
are normalized to 1 instead of being normalized to the
quency of the avalanches.

From Ref.@5#, we know that the dependence of the PD

FIG. 8. PDF of the avalanche size for different lengths of
sandpile:~a! the full PDF and~b! PDF for small values ofS/La

showing the lack of self-similarity.
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of the avalanche size onL is not a simple self-similarity
relation, as

PS~S,L !5Lbp̂~S/La!. ~30!

It is a multifractal fit that best describes the numeric
data. In this section, we analyze how this multifractal dep
dence may appear. The lack of self-similarity is evidenced
Fig. 8, where we have plotted thePS(S,L) for the different
sandpile lengths considered in this study. We have chosen
exponenta to get a good alignment of the tails of the PDF
@Fig. 8~a!#. Then, by looking at the PDF for small values
S/La @Fig. 8~b!# we see a systematic deviation from se
similarity. This is not surprising. From the analytical stud
that we presented in the preceding section, theL dependence
in PS(S,L) is coming through the parameterp1 . As we ob-
tained in Eq.~26!, there is no self-similarity ofPS(S,L). The
only possible way of recovering the self-similar properties
by separating inPS(S,L) the contribution of the 1D and 2D
avalanches. We can do so with the numerical results.

First, let us consider the PDF of the duration or size of
n51 ~1D! avalanches. We can see in Fig. 9 that this PDF
self-similar under a transformation of the type in Eq.~29!
with a5b50.5. Since these PDFs have been normalized
1, a5b. For all the sizes of the sandpiles considered,
points of the PDF fall on top of the same curve.

For the 2D (nÞ1) avalanches, the PDFs of the avalanc
size are self-similar but with an exponenta5b50.85. This
is shown in Fig. 10 for sandpile sizes varying fromL5200
to 12 800. The scaling exponent is completely different fro
the scaling of the PDF of the avalanche size for then51
avalanches~Fig. 9!. The analytical model gives a factor of
between these exponents. This is not the case of the num
cal results. This discrepancy is not surprising because in
determination of these exponents in the self-similarity tra
formation, tails of the PDFs dominate and we know that
analytical model fails in giving those tails.

When we consider the 1D and 2D avalanches separa
and for different values of the sandpile size, their PDFs se
to be self-similar. However, since we based the analysis
numerical results only, it is not possible to prove that t
self-similarity is exact. However, if it is not exact, the sym
metry breaking effects are small for the range of sandp
lengths considered here.

FIG. 9. PDF of the size of the 1D avalanches.
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Another important issue to consider for the breakdown
the strict self-similarity of the avalanche PDFs is the ro
played by the avalanches that cross the edge of the sand
These avalanches are a small portion of the total numbe
avalanches, but they can modify the tail of the PDF beca
this class of avalanches includes the longest ones. The
tion of avalanches with flux out of the sandpile decrease
a fractional power of the sizeL. This dependence inL is
shown in Fig. 11. These avalanches with flux out of t
sandpile mostly start close to the edge. In Fig. 12 we h
plotted the radial distribution of the starting points of t
avalanches going through the edge boundary. Most of th
avalanches start within 3% of the radius from the ed
These are mostlyn51 avalanches. Avalanches withnÞ1
can start deep inside the sandpile, but the probability falls
exponentially from the edge. The width of the exponen
can be considered as a measure of the edge region o
sandpile. From these data, we have determined that the
malized width scales asW/L50.64L21/3. Therefore, as the
size of the sandpile increases, this edge region becomes
tively less important and so has its effect on the overall c
tribution to the PDF.

FIG. 10. PDF of the size of the 2D avalanches.

FIG. 11. Fraction of avalanches with flux out of the sandpile
a function of the sandpile length.
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VII. CONCLUSIONS

In the sandpile model, the existence of two types of a
lanches with different space-time structures causes a brea
the self-similarity of the PDFs. The scaling of the avalanc
size withL is different for the 1D and 2D avalanches. Ther
fore, when the scaling is studied with the combined effect
both types of avalanches, the effective scaling expone
vary with the parameter of the system. However, asL in-
creases, the 2D avalanches tend to become dominant, a
the limit of infinite size, the scaling exponent should
given by the scaling of these avalanches.

The different dependence onL comes through the param
eter p1 , the probability for a cell to be unstable whenNf
grains of sand are added to this cell. This parameter car
the information on the correlation length of the sandp
slope, and through this the correlation length knows ab
the sandpile size.

There are also boundary effects. Those effects bec
smaller as the size of the sandpile increased, but the decr
of the effects goes as a fractional power ofL, of about21

3.
Therefore, it is necessary to go to relatively large sandp
sizes to minimize those effects. In reality, they never dis
pear and they can become quite important when other
namical effects, such as diffusion@9,10#, are added to the
sandpile dynamics.
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FIG. 12. Radial distribution of the starting points of the av
lanches going through the edge boundary.
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