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Long-range time dependence in the cross-correlation function
B. A. Carreras and D. E. Newman
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~Received 30 July 1998; accepted 2 November 1998!

Detection of a long-range time dependence in the radial cross-correlation function is normally
difficult because of the oscillatory behavior of the cross-correlation tail, its low level of coherence,
and noise contamination. This problem persists, even with large statistical samples. In this paper, a
method for investigating long-range dependence in a single time series is extended to the calculation
of the cross-correlation function. With this method and for time series with long-range time
correlations, the accuracy of the determination of the cross-correlation function for long time
lags is improved. The method is tested by applying it to fractional Gaussian noise and to the fluxes
in a running sandpile model. This analysis technique can be applied to the detection of
avalanche-type transport in magnetic confinement devices. ©1999 American Institute of Physics.
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I. INTRODUCTION

Some of the phenomena observed in plasmas confi
by magnetic fields suggest that a broad range of space
time scales play an essential role in the dynamics of
plasma. One of the possible explanations1,2 is that plasma
dynamics is governed by self-organized criticality~SOC!.3

Under such an assumption, a feature of the dynamics is
existence of transport events of all sizes that we usually
note as avalanches. Some plasma turbulence models
shown the possibility for such a transport mechanism.4,5

To identify the existence of avalanches in the expe
ments is not easy. A first attempt has been directed tow
the identification of algebraic tails in the autocorrelati
function of the plasma edge fluctuations.6 Results from the
analysis of fluctuation data from several experiments, incl
ing tokamaks, stellarators, and reversed-field pinch, sho
the self-similar character of the electrostatic fluctuations w
a self-similarity parameter,H, in the range 0.6 to 0.74. Suc
a character of the plasma edge fluctuations is consistent
transport by avalanches, but that is far from identifying it
the only possible mechanism.

Transport by avalanches is characterized by a br
range of radial scales. This range of scales should appe
an algebraic tail in the radial autocorrelation function. A
identification of an algebraic tail in the radial correlatio
function would require a large number of simultaneous m
surements of fluctuations at different radial positions. T
number required makes such an approach unthinkable; th
fore, we need to find a different approach. Because simu
neous measurements of fluctuations at a few radial posit
are possible, it is interesting to investigate the correlation
the events responsible for the long-range time correlation
each radial position. The problem in doing so is the statist
requirements.

In the case of the autocorrelation function, it is not ea
to directly detect the long time lag algebraic tail. The reas
4851070-664X/99/6(2)/485/10/$15.00
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are the oscillatory character of the tail, its low level of c
herence, and noise contamination. The use of the resc
range~R/S! analysis7 or some of its variants8 allows one to
surmount these difficulties. To study the radial correlation
events associated with long time lags is even an orde
magnitude harder. The direct calculation of the cro
correlation function does not provide the needed accurac

In this paper, we propose a generalization to the cro
correlation function of the techniques used in investigat
the long time lag tail of the autocorrelation function.9,10 With
this method, we are able to improve the accuracy of
determination of the existence of algebraic tails for long tim
lags. The method is tested by applying it to fractional Gau
ian noise~fGn!11 and to the fluxes in a running sandpi
model. The results show that the proposed method give
effective determination of the long-range correlations in si
ations for which the direct calculation of the cros
correlation function cannot detect it.

The remainder of this paper is organized as follows.
Sec. II, the analysis technique for cross-correlation meas
ments is introduced. An application to the cross-correlat
of fGn sequences is discussed in Sec. III. In Sec. IV,
basic algorithm of the running sandpile model is present
along with a discussion of the radial cross-correlation
fluxes. In Sec. V, the analysis presented in Sec. II is app
to the sandpile fluxes. It shows the higher accuracy in
determination of the long-range tails of the cross-correlat
function. Finally, the conclusions of this paper are presen
in Sec. VI.

II. ANALYSIS APPROACH

Many techniques have been proposed to determine
long-range correlations in a time series. One of the first
proaches was the R/S method, pioneered by Mandelbrot
Wallis.7,12 This was followed by several others, among the
the scaled windowed variance method13–15 and the disper-
© 1999 American Institute of Physics
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sional method.8,16 Some of these methods can be extended
the case of cross-covariance of two time series.

First, we briefly discuss the basis for these analy
methods.9 Given time series of lengthn, X[$Xt :t
51,2,...,n%, corresponding to a stationary process,
second-order properties of this time series are given by
autocovariance functiongD5cov(Xt ,Xt1D), whereD is the
time lag. However, an alternative representation of
second-order properties of this series can be constru
through averaging the original time series over nonoverl
ping blocks. That is, for eachm51,2,...,n, we construct a
new time series,X(m)[$Xu

(m) :u51,2,...,n/m%, with n/m el-
ements by first separating the original one inn/m nonover-
lapping blocks ofm elements. Each element of the new s
ries is obtained by averaging them elements in each of the
blocks. That is,

Xu
~m!5

Xum2m111¯1Xum

m
. ~1!

For eachX(m) series, we can define its varianceV(m), with
AV(m) measuring the relative dispersion at each scalem. It
has been observed that the ratio of the logarithm
AV(m)/V(1) to the logarithm of the scalem is 12D, whereD
is the fractal dimension of the series. HereD is also related
to the Hurst exponent,7,17 H522D.

The variance of the subseriesX(m),V(m), can also be
directly related to the autocovariance function,

V~m!5
V~1!

m
1

2

m2 (
s51

m

(
D51

s21

gD . ~2!

This relation separates the short and long time lag contr
tions. For a random variableX, the first term on the right-
hand side~rhs! of Eq. ~2! dominates, and in the limit of large
m, we obtain the Gaussian statistics result, that is, the s
dard deviation decreases as one over the square root o
number of samples. However, for processes with long-ra
time dependence, the second term may diverge in the largm
limit. In this situation,X does not verify the conditions of th
Central Limit Theorem, andV(m) does not scale asm21.
Equation~2! can also be used to calculate the autocovaria
function of the original series in terms of the variance of t
successive averaged subseries. Inverting Eq.~2!, we obtain

gD5 1
2]

2~D2V~D!!. ~3!

Here, the operator]2 is the second-order central derivativ
operator in finite differences; that is,

]2~ f i !5 f i 111 f i 2122 f i . ~4!

Equation~3! shows that the information on the variance f
all time series,X(m), resulting from averaging the origina
sequence is equivalent to the information contained in
autocovariance function for the original series,X. Therefore,
for an infinite series,V(m) provides an alternative equivalen
description of the second-order properties of the original
ries. The advantage of usingV(m) to determine the
asymptotic behavior of the autocorrelation function inste
of usinggm directly is that the latter is a second derivative
the former. Therefore, small oscillations inV(m) are ampli-
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extract the scaling behavior fromgm , but in many cases it is
possible fromV(m).

Because of this advantage, we would like to genera
Eq. ~3! to the cross-covariance function for two time serie
We will take these two series to be measurements at
separate radial positions. This is motivated by the appli
tions we have in mind, and it is not a limitation of the tec
nique that can be applied to any two series. Let us cons
two time sequences of lengthn: the first oneX[$Xt :t
51,2,...,n% is measured at a radial positionr 1 ; and the sec-
ond oneY[$Yt :t51,2,...,n% is measured at a radial positio
r 25r 11d. For each series, we can calculate the series
partial averages, that is,X(m)[$Xu

(m) :u51,2,...,n/m% and
Y(m)[$Yu

(m) :u51,2,...,n/m%, where the elements of thes
series,Xu

(m) andYu
(m) , are given by Eq.~1!. We assume tha

each of the two sequences of partial averages has zero m
to avoid unessential complications in the following calcu
tions.

For each pair of time sequences, the cross-covarianc
defined in the following way:

g~m!~D,d!5
m

n (
u51

n/m

Xu
~m!Yu1D

~m! . ~5!

Here,g (1)(D,d) is the usual cross-covariance of the origin
sequence,X andY. Now the problem is to relateg (m)(0,d) to
g (1)(D,d) in a way analogous to Eq.~3!. To do so, we must
calculateg (m)(0,d) in an explicit way:

g~m!~0,d!5
m

n (
u51

n/m

Xu
~m!Yu

~m!

5
1

mn (
u51

n/m S (
i 51

m

Xum2m1 i D S (
j 51

m

Yum2m1 j D .

~6!

Expanding and regrouping terms, we obtain

g~m!~0,d!5
1

m
g~1!~0,d!1

1

m2

3 (
i 51

m21

(
D51

m21

@g~1!~D,d!1g~1!~2D,d!#. ~7!

This relation is a generalization of Eq.~2!. It relates the
radial correlation of the partial sums series to the radial c
relation at nonzero lags. This relation can be inverted in
same way as it was done for Eq.~2!, and leads to

2gs~m,d![g~1!~m,d!1g~1!~2m,d!5]2@m2g~m!~0,d!#,
~8!

where]2 is the second-order finite-difference operator, E
~4!, andgs(m,d) is the symmetric component of the cros
covariance. Equation~8! tells us that calculating the cross
covariance of the partial averages at zero lag is equivalen
calculating the symmetric part of the cross-covariance fo
finite time lag. For the autocorrelation, this method was
e or copyright; see http://pop.aip.org/about/rights_and_permissions
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vantageous, because by taking the sums we eliminate s
of the high frequency that we are not interested in and do
nate the correlations.

The scaling ofg (m)(0,d) with m provides further infor-
mation, as it was the case of the variance of a single se
When g (m)(0,d) falls off with m as a power,g (m)(0,d)
'g (1)(0,d)m2b, Eq. ~8! gives

gs~m,d!' 1
2~22b!~12b!g~m!~0,d!. ~9!

Here, we assume that 2.b.0. Equation~9! shows that the
symmetric part of the cross-covariance,gs(m,d), has the
same power tail inm asg (m)(0,d). Therefore, to determine
this power tail is easier to do it forg (m)(0,d). If we try to
calculate it from the cross-covariance, we have to take
derivatives ofg (m)(0,d), which clearly amplifies the noise
The advantages of this method are similar to those when
applied to the autocorrelation function. With this method,
have the level of correlation when a power tail exists, an
can be detected even for very low cross-correlation valu
However, a caveat is needed. In the case of zero cr
correlation, Eq.~8! only gives zero equal zero. Using re
data, we do not get zero. Therefore, a determination o
power decay exponent in this situation is misleading. O
when the correlation is nonzero does the determination of
exponents make sense.

When the cross-covariance is a power function of
time lag, we can introduce an effective cross-correlat
function based on Eq.~9!. Dividing both sides of Eq.~9! by
the square root of the product of the variance of each se
we obtain the symmetric component of this cross-correlat

rs~m,d!5
~22b!~12b!

2

g~m!~0,d!

AV1
~1!V2

~1!
, ~10!

where V1
(1) and V2

(1) are the variance for the two inpu
series. We determineb for each m by calculating
2 ln@g(m)(0,d)/g (1)(0,d)#/ ln(m). For d50, this is the pre-
scription of the dispersional method, andb52D22. Having
b, we can calculaters(m,d) from Eq. ~10!. This expression
is only valid for a simple power dependence, but it is a use
measure if there are not strong deviations from a power l
In the latter case, we considerb to be a weak function ofm
and determine its value by doing a power fit over shortm
intervals. In analogy to the autocorrelation function, we c
define anH exponent for the cross-covariance byH51
2b/2.

In what follows, we comparers(m,d) calculated using
Eq. ~10! with

r̂s~m,d!5
g~1!~m,d!1g~1!~2m,d!

2AV1
~1!V2

~1!
, ~11!

whereg (1)(m,d) and g (1)(2m,d) are calculated using th
direct definition of cross-correlation, Eq.~5!. From this com-
parison, we can assess the advantages of using Eq.~10! in-
stead of the direct determination of the cross-correlation

From the previous discussion, we have identified th
different methods for calculating the symmetric compon
of the cross-correlation function. We have summarized th
methods in Fig. 1.
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~1! A direct determination of the covarianceg (1)(D,d)
using Eq. ~5!, followed by the calculation ofr̂s(D,d)
through Eq.~11!. This is the usual method of calculating th
cross-correlation function. We denote the symmetric com
nent of the cross-correlation evaluated this way by

r1~D![r̂s~D,d!. ~12!

~2! Once we have evaluatedg (m)(0,d) as described
above, we takej(m)[g (m)(0,d). Alternatively, if we have
evaluatedr̂s(D,d) by the previous method, we invert Eq.~8!
by integrating twice; that is, we calculate

j~m!5
2

m2 E E
0
dDr̂s~D,d!. ~13!

For all cases we have considered,j(m) is a smooth function
of m with a clear algebraic tail. We can do a fit to th
function using a simple parametrization,j̄(m). Then we can
calculate analytically the second derivatives ofj̄(m) and re-
cover a smoother form for the cross-correlation function,

r2~D![
1

2

d2~m2j̄ !

dm2 U
m5D

. ~14!

~3! We calculate the cross-covariance of the seriesXu
(m)

andYu
(m) as a function of time lagm. Using Eq.~10! andb

determined by one of the methods previously discussed,
obtain a third form for the cross-correlation,

r3~D![rs~D,d!. ~15!

In Sec. IV, we discuss an example of the second met
applied to the fluxes of a running sandpile model. In th
case, the cross-covariance of the partial sums,g (m)(0,d), can
be approximately described over a broad range of time l
by a function of the form

g~m!~0,d!'
c1

~11m/m0!b , ~16!

wherec1 is a constant. We can use this analytical parame
zation to test the approximations discussed above. We h
calculatedg (m)(0,d) for b51.7 andm05700. In Fig. 2, we
have plottedgs(m,d) calculated from Eq.~8! and its ap-
proximate form given by Eq.~9!. We can see that the cross
covariancegs(m,d) has a zero that distorts the algebraic t
for short time lags. However, the approximate form, Eq.~9!,
has a well-defined asymptotic tail, describes well the sy

FIG. 1. Three different methods for calculating the symmetric componen
the cross-correlation function of two time series.
e or copyright; see http://pop.aip.org/about/rights_and_permissions
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metric cross-covariance in the regions of power depende
and gives its value within a factor of 2. The same can be s
for the cross-correlation given by Eq.~10! because it only
differs from the cross-covariance by a normalization co
stant.

In Eq. ~5!, the number of terms used to calcula
g (m)(0,d) decreases asn/m when m increases. We have
found that unlessm.n/10, the calculatedg (m)(0,d) is not
reliable. In case of a noisy signal, it is also important to u
an ensemble average of several subsamples. Both condi
set serious constraints on the required statistics for th
studies.

III. ANALYSIS OF CROSS-COVARIANCE BETWEEN
SERIES OF FRACTIONAL GAUSSIAN NOISE

After having developed a method of analysis for t
cross-covariance of two time series, we would like to u
some model-generated series to test the effectiveness o
analysis. To better understand these techniques, it is usef
start with fGn.11 To do so, we first had to construct a fG

FIG. 3. The R/S analysis of four fGn time series. In this figure,H in is the
input value for generating the series andH is the result of the fit to the R/S
values.

FIG. 2. Symmetric component of the cross-covariancegs(m,d) calculated
from a cross-covarianceg (m)(0,d) given by Eq.~16! and for b51.7 and
m05700. The figure showsgs(m,d) calculated from Eq.~8! and its ap-
proximate form given by Eq.~9!.
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time series. As a generator for these time series, we h
used the method described in Ref. 18 and summarized in
Appendix. In generating the fGn sequences, we need as i
a sequence of random numbers. Using this method, we h
calculated several fGn sequences of 10 000 points. To
the reliability of the fGn generator, we have applied the R
analysis to these time series; the results are shown in Fig
In this figure,H in is the input value for generating the serie
the fit to the R/S values shows the resulting value ofH. The
results seem to be in agreement with the usual R/S slight
toward the 0.7–0.8 range.

To calculate the cross-covariance, we have to gene
pairs of sequences. We have considered two types of pa

~1! Two sequences with the same value ofH in , gener-
ated with independent random number sequences. We ex
these series to be totally uncorrelated. The results of the
relation analysis of these series are shown in Table I. In
table,HX andHY are theH exponents of the seriesX andY,
respectively, andHCC is the correspondingH for the cross-
covariance.

~2! Two sequences with different values ofH in , but gen-
erated with the same sequence of random numbers.
should create a correlation between the series. The resul
the analysis of these series are shown in Table II. The n
tion in Table II is the same as for Table I.

For the time sequences of Table I, theHCC is larger than
both HX and HY , and it is close to 1. However, for th
sequences in Table II, the exponent of the cross-covarian
between the exponents of the two input series. The m
difference between the cases in Table I and Table II is
level of correlation between the input pair of time sequenc
In the case of decorrelated sequences, the cross-covar
tends to be independent ofm, and its value decreases wit
increasing numbers of samples that we average. This is
flected inHCC having no relation to theH exponent of the
two input sequences. These results are illustrated in Fig
where we have plottedug (m)(0,d)u for H in50.5. We have
plotted this function for a single sample and for the avera
over ten samples. In doing the average, the value ofH only
changes from 0.8 to 0.76. However, the covariance va
decreases considerably, and the function becomes noisie
the same figure, we also compareg (m)(0,d) with V(m) for the
input series, showing the clear change in the functional

TABLE I.

H in HX HY HCC

0.9 0.83 0.85 0.99
0.7 0.66 0.69 0.96
0.5 0.52 0.52 0.82

TABLE II.

H in HX HY HCC

0.9–0.6 0.82 0.57 0.71
0.8–0.6 0.75 0.57 0.67
0.6–0.6 0.57 0.57 0.57
e or copyright; see http://pop.aip.org/about/rights_and_permissions
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pendence onm. If we look at both the autocorrelation and th
cross-correlation of this series calculated using Eq.~10!, we
see that both are very low and oscillate~Fig. 5!. The value
decreases with the number of samples that we average. A
this indicates that no correlation exists.

When the time sequences are correlated~examples in
Table II!, g (m)(0,d) has anm dependence close to theV(m)

of the original input sequences. This is shown in Fig.
Calculating the autocorrelation for both series and th
cross-correlation using Eq.~10!, we have a well-defined be
havior with m, and the three functions remain positive. Th
clearly indicates that both series are correlated, and we
obtain an estimate for the correlation level using the th
method described in Sec. II; that is, applying Eq.~10! to
g (m)(0,d). It is interesting to compare the symmetric com
ponent of the cross-correlation function calculated direc
by Eq.~5!, r1[r̂s(m,d), with the one calculated by the thir
method proposed in this paper, that is,r3[rs(m,d) from
Eq. ~10!. Since the covariance in this case is a simple pow
law, the result of using the second method described in S
II is identical to using the third method. This comparison
shown in Fig. 7. For time lags below 50, the two calculatio
give very similar results. However,r̂s(m,d) becomes very

FIG. 4. Cross-covarianceug (m)(0,d)u for two H in50.5 time sequences for a
single time sample and averaged over 10 time samples. The covar
function is also compared to the variance of a single sequence.

FIG. 5. Autocorrelation and the cross-correlation of the twoH in50.5 time
series used in Fig. 4.
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noisy for longer time lags, and it is impossible from th
direct calculation to determine its functional dependence
long time lags. Forrs(m,d), the oscillations and noise ar
minimal over the whole range of time lags considered.

IV. RADIAL CORRELATION OF FLUXES IN A
SANDPILE MODEL

The running sandpile model has been suggested a
paradigm for SOC turbulent plasma transport in magne
confinement devices.1,2 The sandpile model has the instab
ity gradients represented by the slope of the sandpile, w
the turbulent transport is modeled by the local amount t
falls ~overturns! when the sandpile becomes locally unstab
The model system is driven by a random ‘‘rain’’ of san
grains on the pile. This model allows us to study the dyna
ics of the transport independent of both the local instabi
mechanism and the local transport mechanism. Becaus
the relative simplicity of the model, we are also able to
very long time calculations and collect reasonably large s
tistical samples.

A standard cellular automata algorithm19 is used to study
the dynamics of the driven sandpile. The domain is divid
into L cells, which are evolved in steps. The number of sa

ce
FIG. 6. Cross-covariance and the variances for two fGn correlated se

FIG. 7. A symmetric component of the cross-correlation function for t
fGn series calculated by the direct method and using Eq.~10!.
e or copyright; see http://pop.aip.org/about/rights_and_permissions
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grains in a cell ishn , called the height of celln. We take as
radial position the valuen that identifies the cell. The loca
gradient isZn , the difference betweenhn andhn11 , andZcrit

is the critical gradient. The sandpile evolution is governed
the following simple set of rules.

~1! First, sand grains are added to the cells with a pr
ability P0 . For each cell, a random number 0<p<1 is
drawn, if p>12P0 ; then

hn5hn11; ~17!

otherwise, the heighthn is not changed.
~2! Next, all the cells are checked for stability agains

simple stability rule and either flagged as stable,Zn,Zcrit ,
or not,Zn>Zcrit .

~3! Finally, the cells are time advanced, with the u
stable cells overturning and moving their excess ‘‘grains’’
another cell. That is, ifZn>Zcrit , then

hn5hn2Nf ,
~18!

hn115hn111Nf .

Here,Nf is the amount of ‘‘sand’’ that falls in an overturnin
event. In terms of the physical quantities that we assoc
with turbulent systems, each cell can be thought of as
location of a local turbulent fluctuation~eddy!. HereZcrit is
the critical gradient at which fluctuations are unstable a
grow, andNf is the amount of ‘‘gradient’’ that is transporte
by a local fluctuation~local eddy-induced transport, for ex
ample!. The average sandpile profile is equivalent to t
mean temperature or density profile, while the total num
of sand grains in the pile~the total mass! is the total energy/
particle content of the device. At any given time, the loc
flux at a radial position is either zero, if this position
stable, or ofNf , if it is unstable. Time records of the flux a
different radial positions are stored during the steady-s
phase of the sandpile evolution. In the next section, we
apply the techniques described in Sec. II to analyze th
time records, in particular, to the cross-correlation of flux
in different radial positions.

An analysis of the sandpile fluxes has shown the e
tence of two characteristic time lag regions.20 For time lags
shorter than the time needed to cross the sandpile,Dt,L,
the Hurst exponent is about 0.8. This indicates the existe
of long-range correlations that are induced by avalanch
Similar values ofH have been found in the analysis
plasma edge fluctuations.6 For long time lags, longer than th
time needed to cross the sandpile,Dt@L, the analysis of
sandpile fluxes gives values ofH below 0.5. This corre-
sponds to long-range anticorrelations, which is an indicat
that once a large avalanche has happened, the probabili
another large avalanche decreases. To detect if simila
fects exist in plasma fluctuations requires very long ti
records, longer than the ones used up to now in those ty
of analysis.

In the sandpile model, each avalanche propagates
uphill and downhill.21 This is a consequence of the ma
conservation during the propagation; grains propagate do
hill, while ‘‘holes’’ propagate uphill. This form of propaga
tion translates to a particular structure of the cro
oaded 29 Aug 2011 to 137.229.53.151. Redistribution subject to AIP licens
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correlation of fluxes.2 In Fig. 8, we show in schematic form
three different types of avalanches crossing the radiur
5r 1 and r 5r 25r 11d. We measure time in relation to th
r 1 position. Avalanches starting atr ,r 1 , for example, at
point 1 in Fig. 8, crossr 2 with a time delayD5d, while the
ones starting atr .r 2 , for example, at point 2 in the sam
figure, crossr 2 at D52d before reachingr 1 . Therefore, we
expect the cross-correlation to have two maxima atD52d
andD5d, respectively. The relative height of these maxim
is related to the relative probability of avalanches starting
r ,r 1 , P0r 1 , versus the probability of avalanches starting
r ,r 2 , P0(L2r 2). Also, avalanches start betweenr 1 andr 2 ,
like at point 3 in Fig. 8. For these avalanches, the time
lies in the interval2d,D,d. These avalanches give th
cross-correlation between the maxima and can result in
ing up the minimum between them and giving just a fl
region between the peaks.

The change of the antisymmetric component of t
cross-correlation function with a radial position is illustrat
in Fig. 9. In this figure, we have plotted the cross-correlat

FIG. 8. Three types of avalanches depending on the position of the sta
point with relation to the two radial positions where the flux is measur
The vertical axis indicates the radial position in the sandpile and the h
zontal axis indicates the time.

FIG. 9. The cross-correlation function of the fluxes of a sandpile withd
540 in relation to the radius ofr 5140. The antisymmetric component o
the cross-correlation function depends on the relative positions of the
faces.
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function for a fixed radial separation,d540, at two different
radii r 2 on the sandpile. As discussed above, the cro
correlation function has a clear peak atD5640. The anti-
symmetric component of the cross-correlation changes
when we move from near the center,r 15140 andr 25100,
to near the edge,r 15140 andr 25180, because near th
edge there are not many upward propagating avalanches
downward propagation dominates. The avalanche prop
tion in opposite directions also causes an increased dec
lation. At the edge of the sandpile, there is only one poss
propagation direction, outward. In this case, the asymm
is extreme and the cross-correlation larger than toward
inside ~Fig. 10!. As d increases, the correlation decreas
and the point of maximum correlation, (D)max, moves to-
ward high time lags in such a way that (D)max5d. This is
shown in Fig. 11, where we have plotted the cro
correlation function for a fixed reference position,r 15140,
and changingr 2 . For the samed, the symmetric part of the
cross-correlation is practically the same, while the antisy
metric contribution varies withr 2 , as was shown in more
detail in Fig. 8.

FIG. 10. The cross-correlation function of the fluxes of a sandpile withd
520 in relation to the radius ofr 5180. At the edge of the sandpile, there
only one possible propagation direction, outward. In this case, the asym
try is extreme and the cross-correlation larger than toward the inside.

FIG. 11. The cross-correlation function of the fluxes of a sandpile a
function of d for a fixed reference position,r 15140, and changingr 2 .
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For time lags in the range of 102,D,33103, the sym-
metric component of the cross-correlation goes through z
and has a clear region of anticorrelation. For long time la
D.103, the functionr̂s(D,d) is very noisy and oscillates
From this result, it is clear that we cannot use the dir
determination ofr̂s(D,d) to assess the functional depe
dence of the cross-correlation at long time lags. For a gi
set of parameters, the position of the first zero does not s
sitively depend on the specific realization or the length of
time series for series lengths above 105 points. In Fig. 12, we
have plotted the absolute value of the cross-correlation fu
tion for d520 and for three record lengths: 104, 105, and
106 points. As the record length increases, the power dep
dence of the tail before the first zero becomes better defin
The position of the first zero of the cross-correlation functi
depends on the value ofP0 . As P0 increases, the zero move
to shorter time lags and the overall cross-correlation
creases.

The results shown in Figs. 9–12 are for a sandpile
lengthL5400,Zcrit510, Nf53, and the evolution is driven
by a rain of grains with a probability varying betweenp0

50.0005 andp050.0025. The cross-correlation is calculat
in the direct way using theg (1)(D,d) covariance given by
Eq. ~5!.

V. ANALYSIS OF THE SANDPILE RADIAL
CORRELATION OF FLUXES

In the previous section, we have discussed the prope
of the g (1)(D,d) cross-covariance and cross-correlati
r̂s(D,d) of the sandpile fluxes. Both functions have be
calculated by the direct method. From the calcula
r̂s(D,d), it is difficult to discern the functional form of a
high time lag tail. In this section, we test the alternati
determination of the long time lag tail of the cros
correlation by the other two methods discussed in Sec
Since r̂s(D,d) has been already calculated, following th
second method, we can calculatej(m) by Eq. ~13!. This
function should be equivalent tog (m)(0,d)/AV1

(1)V2
(1), calcu-

e-

a

FIG. 12. The absolute value of the cross-correlation function ford520 and
for three record lengths: 104, 105, and 106 points. As the record length
increases, the power dependence of the tail before the first zero bec
better defined.
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lated independently by the third method in Sec. II. We ha
plotted both functions in Fig. 13. The first interesting res
is that the functions are smooth and positive. The resul
both calculations agree well, and they show the existenc
a power tail for long time lags. This result is particular
interesting given the apparently noisy character of
r̂s(D,d) function, as shown in Fig. 12. The next step in t
second method is to fit by a simple analytical functio
j̄(m). We used the parametrization given in Eq.~16!, which
provides a good fit for all the cases that we have conside
Once we have obtained the analytical form,j̄(m), we can
carry out the final step in evaluating the symmetric com
nent of the cross-correlation function by the three meth
outlined in Fig. 1. The functionsur1u, ur2u, and ur3u are
compared in Fig. 14 for the average of three time record
105 points each. Bothr2 and r3 show the clear algebrai
tails at long time lags that it was not possible to identify
r1 . They also show similar correlation levels in the region
the tail. Additionally, the three functions have a zero of t
correlation function at about a time lag of 400. This indica

FIG. 13. A comparison betweenj(m) for the sandpile flux calculated usin
Eq. ~13! and g (m)(0,d)/AV1

(1)V2
(1), calculated independently by the thir

method in Sec. II.

FIG. 14. A symmetric component of the cross-correlation function of sa
pile fluxes calculated by the three methods outlined in Fig. 1. The funct
ur1u, ur2u, andur3u are the average of three time records of 105 points each.
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anticorrelation for all lags above the zero crossing. Forr3 ,
the zero is always somewhat higher than the other two m
ods, because in its derivation, we have assumed a power
behavior for g (m)(0,d). This approximation fails near the
zero. The change from correlation to autocorrelation can a
be detected directly ing (m)(0,d) ~Fig. 13! when the exponen
b becomes larger than 1.

To determine the algebraic tail of the cross-correlat
function of the sandpile fluxes under different conditions,
can look atg (m)(0,d). The results whend changes are plot-
ted in Fig. 15. At each radial position, we have used six ti
records of 105 points each. For the different time record
r3(m,d) has a very similar dependence on the time lag
does not oscillate or change sign. This is a clear indicat
that a correlation exists. In Fig. 15, we can see how incre
ing the radial separation,d, changes the magnitude of th
cross-correlation. The cross-correlation decreases at s
time lags because the short avalanches~in length and dura-
tion! cannot cross both of the radial surfaces consider
Therefore, as the separation increases, the peak atD50 de-
creases, and the point of change ofg (m)(0,d) moves to larger
values of the time lag. This change, moving toward long
time lags; corresponds to the shift of the peak of the cro
correlation function, as shown in Fig. 10. The decrease in
peak ofg (m)(0,d) causes a flattening of this function at sho
time lags, but its tail for long time lags seems to remain
same. If the tail ofg (m)(0,d) remains the same, regardless
the value ofd, the flux events associated with it are corr
lated for relatively large radial separations. To better exa
ine the structure of the tail for long time lags, we plotted
Fig. 16 some functions of Fig. 15 in a logarithmic scale. T
agreement on the high time lag tails is clear, which is e
dence for the radial correlation of the long avalanches.
can arrive at a similar conclusion by looking at the cro
power spectrum~Fig. 17!. The high-frequency range, assoc
ated with small nonoverlapping avalanches, is stron
modified from the autopower spectrum. At high frequenci
the autopower spectrum falls off asv2a, with a in a range 2
to 4, while the cross-power spectrum in the same range
frequencies shows strong oscillations with peaks at frequ
cies of 1/d and higher harmonics.2 However, the 1/f and

-
s

FIG. 15. A symmetric component of the cross-covariance function of
sandpile fluxes for different values ofd.
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low-frequency ranges, which are associated with large-s
and long correlation events, are hardly changed.

It is interesting to compare the level of cross-correlat
as a function ofd for short time lags~decorrelation of the
fluctuations and short avalanches! and for long time lags
~correlation of large events!. We can see in Fig. 18 how th
correlation at short time lags (m510 in the figure! decays
systematically withd, while at longer time lags (m5967 in
the figure! it stays at a constant level.

The tail of theg (m)(0,d) function at long time lags has
power dependence with exponentb varying between 1.3 and
1.7 for the different parameters considered. As previou
indicated, the autocorrelation tails have the same type
power dependence. In the case of the autocorrelation,
exponent provides an interpretation for the type of corre
tion. Thisb range corresponds to a range in the Hurst ex
nent from 0.35 to 0.15, which indicates that the events in
tail are anticorrelated. This interpretation is consistent w
the cross-correlation having a zero and being negative a
long time lags. Therefore, for the sandpile fluxes and ti
lags longer than 1000, the events are anticorrelated. Th

FIG. 16. A symmetric component of the cross-covariance together with
variance for the reference position for the same cases as Fig. 15. The p
logarithmic scale to better examine the structure of the tail for long t
lags.

FIG. 17. The cross-power spectrum for sandpile fluxes withd520.
oaded 29 Aug 2011 to 137.229.53.151. Redistribution subject to AIP licens
le

ly
of
he
-
-
e
h
he
e
is

probably an indication that once a large avalanche has
curred, the probability of another large avalanche decrea

The alternative methods for determining the long tim
tail can indeed give insight into the dynamics of the runni
sandpile. Here, we have limited the study to show the eff
tiveness of these methods. The implication of the analysis
the sandpile dynamics will be discussed elsewhere.

VI. CONCLUSIONS

The extension of the method to investigate long-ran
dependence in a single time series to the cross-correla
function has been shown to be effective. Two possible n
methods have been suggested. With both methods, and
time series with long-range time correlations, we are able
improve the accuracy on the determination of the cro
correlation for long time lags. For both fractional Gaussi
noise and fluxes in a running sandpile model, these n
analysis techniques allow the detection of cross-correla
tails well beyond the values of the time lag for which th
usual cross-correlation function is dominated by noise. Us
the usual determination of the radial cross-correlation fu
tion, it is normally difficult to detect those long-range tim
dependences because of the oscillatory behavior of the cr
correlation tail, its low level of coherence, and the no
contamination.

This approach could be useful in identifying radial co
relation of transport events in magnetically confined pl
mas. Such types of events are expected if plasmas satisf
SOC paradigm. In this case, transport is dominated by a
lanches. Transport by avalanches is characterized by a b
range of radial scales. This range of scales should appe
an algebraic tail in the radial autocorrelation function. Su
an identification could be done by applying the techniqu
described in this paper to simultaneous measurement
fluctuations at a few radial positions. At present, such w
is in progress.

APPENDIX: FRACTIONAL GAUSSIAN NOISE

Let us consider a particle moving on a line and taking
step6j every unit of time. If the step length is a rando
variable with Gaussian probability distribution function

e
t is
e

FIG. 18. The cross-correlation of sandpile fluxes as a function ofd for two
values of the time lag,m510 andm5967.
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p~j!5
1

A2p
expS 2

j2

2 D , ~A1!

then the sequence of independent Gaussian steps is c
Gaussian noise. The position of the particle after a timt
5tm is given by

B1/2~ t !5(
i 51

m

j i , ~A2!

with m being the number of steps andt being the time taken
per step. The functionB1/2(t) is, therefore, the correspondin
Brownian motion associated with the Gaussian noise. T
Brownian motion has no time correlations. Mandelbrot a
Van Ness11 introduced a generalization of the Brownian m
tion, the fractional Brownian motion, that does have lon
range time correlations. Given the value att50, the frac-
tional Brownian motion with indexH is defined by

BH~ t !2BH~0!5
1

G~H1 1
2!
E

2`

t

K~ t2t8!dB~ t8!. ~A3!

This formulation shows that the value of the random funct
BH(t) at a timet depends on all previous incrementsdB(t8),
with the kernel defined as

K~ t2t8!5 H ~ t2t8!H21/2, 0<t8<t,
~ t2t8!H21/22~2t8!H21/2, t8,0 . ~A4!

Since the kernel is a power law function, the fraction
Brownian motion is self-similar with self-similarity param
eterH,

BH~lt !2BH~0!5lH@BH~ t !2BH~0!#. ~A5!

Differentiating the fractional Brownian motion, we obta
the fractional Gaussian noise. To simulate fractional Brow
ian motion, it is useful to express the integral as a summa
on discrete time steps. A practical formula for this was giv
by Mandelbrot and Wallis,22–24

BH~ t !2BH~ t21!

5
n2H

G~H1 1
2!

S (
i 51

n

i H21/2j11n~M1t !2 i

1 (
i 51

n~M21!

@~n1 i !H21/22 i H21/2#j11n~M211t !2 i D .

~A6!
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Here,$j i% with i 51,2,...,M ,..., is a set ofrandom Gaussian
variables with unit variance and zero mean. Here, each i
ger time step has been divided inn intervals to approximate
the integral and the Gaussian noise is averaged overM time
steps. Therefore, the number of time steps taken over w
the Gaussian noise is averaged should be increased with
series length. The number of intervals,n, controls the accu-
racy. A more detailed discussion of the fGn can be found
Ref. 18.
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