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Long-range time dependence in the cross-correlation function
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Detection of a long-range time dependence in the radial cross-correlation function is normally
difficult because of the oscillatory behavior of the cross-correlation tail, its low level of coherence,
and noise contamination. This problem persists, even with large statistical samples. In this paper, a
method for investigating long-range dependence in a single time series is extended to the calculation
of the cross-correlation function. With this method and for time series with long-range time
correlations, the accuracy of the determination of the cross-correlation function for long time
lags is improved. The method is tested by applying it to fractional Gaussian noise and to the fluxes
in a running sandpile model. This analysis technique can be applied to the detection of
avalanche-type transport in magnetic confinement devices1989 American Institute of Physics.
[S1070-664X99)02402-7

I. INTRODUCTION are the oscillatory character of the tail, its low level of co-
herence, and noise contamination. The use of the rescaled
Some of the phenomena observed in plasmas confinednge(R/S) analysié or some of its varianfsallows one to
by magnetic fields suggest that a broad range of space argrmount these difficulties. To study the radial correlation of
time scales play an essential role in the dynamics of th@yents associated with long time lags is even an order of
plasma. One of the possible explanativhs that plasma magnitude harder. The direct calculation of the cross-
dynamics is governed by self-organized criticali§00.>  ¢orrelation function does not provide the needed accuracy.
Under such an assumption, a feature of the dynamics is the | this paper, we propose a generalization to the cross-
existence of transport events of all sizes that we usually desgrrelation function of the techniques used in investigating
note as avalanches. Some plasma turbulence models hayf jong time lag tail of the autocorrelation functidH, with
shown the possibility for such a transport mecharfiSm.  this method, we are able to improve the accuracy of the
To identify the existence of avalanches in the experi-getermination of the existence of algebraic tails for long time
ments is not easy. A first attempt has been directed towar%gs_ The method is tested by applying it to fractional Gauss-
the identification of algebraic tails in the autocorrelationjgp, noise (fGn)'* and to the fluxes in a running sandpile
function of the plasma edge fluctuatich®esults from the model. The results show that the proposed method gives an

analysis of fluctuation data from several experiments, includeffective determination of the long-range correlations in situ-
ing tokamaks, stellarators, and reversed-field pinch, showegkions for which the direct calculation of the cross-

the self-similar character of the electrostatic fluctuations with.qrrelation function cannot detect it.
a self-similarity parametet, in the range 0.6 to 0.74. Such  The remainder of this paper is organized as follows. In
a character of the plasma edge fluctuations is consistent wit§ec_ ||, the analysis technique for cross-correlation measure-
transport by avalanches, but that is far from identifying it aSments is introduced. An application to the cross-correlation
the only possible mechanism. of fGn sequences is discussed in Sec. lll. In Sec. IV, the
Transport by avalanches is characterized by a broagasic algorithm of the running sandpile model is presented,
range of radial scales. This range of scales should appear ggng with a discussion of the radial cross-correlation of
an algebraic tail in the radial autocorrelation function. Anfj,xes. In Sec. V, the analysis presented in Sec. Il is applied
identification of an algebraic tail in the radial correlation 5 the sandpile fluxes. It shows the higher accuracy in the
function would require a large number of simultaneous meagetermination of the long-range tails of the cross-correlation

surements of fluctuations at different radial positions. Theynction. Finally, the conclusions of this paper are presented
number required makes such an approach unthinkable; therg; sec. v

fore, we need to find a different approach. Because simulta-

neous mgasu_re_mt_ants of f_Iuctua_uons gt a few radial po_smorﬁ ANALYSIS APPROACH

are possible, it is interesting to investigate the correlation o

the events responsible for the long-range time correlations in  Many techniques have been proposed to determine the

each radial position. The problem in doing so is the statisticalong-range correlations in a time series. One of the first ap-

requirements. proaches was the R/S method, pioneered by Mandelbrot and
In the case of the autocorrelation function, it is not easyWallis.”*? This was followed by several others, among them

to directly detect the long time lag algebraic tail. The reasonshe scaled windowed variance methdd® and the disper-
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sional method:*® Some of these methods can be extended tdied in v,,. For noisy signals, it is practically impossible to

the case of cross-covariance of two time series. extract the scaling behavior from,,, but in many cases it is
First, we briefly discuss the basis for these analysigossible fromv(™.
methods’ Given time series of lengthn, X={X:t Because of this advantage, we would like to generalize

=1,2,..n}, corresponding to a stationary process, allEg.(3) to the cross-covariance function for two time series.
second-order properties of this time series are given by th&/e will take these two series to be measurements at two
autocovariance functiony, =cov(X;,X;; ), WhereA is the  separate radial positions. This is motivated by the applica-
time lag. However, an alternative representation of thdions we have in mind, and it is not a limitation of the tech-
second-order properties of this series can be constructedque that can be applied to any two series. Let us consider
through averaging the original time series over nonoverlaptwo time sequences of length: the first one X={X,:t

ping blocks. That is, for eacm=1,2,...n, we construct a =1,2,...n} is measured at a radial positiop; and the sec-
new time seriesXM={X(":u=1,2,...n/m}, with n/m el-  ond oneY={Y,:t=1,2,...n} is measured at a radial position
ements by first separating the original oneniftm nonover- r,=r,+ 6. For each series, we can calculate the series of
lapping blocks ofm elements. Each element of the new se-partial averages, that i%(m)z{xﬁm’ :u=1,2,..n/m} and

ries is obtained by averaging time elements in each of the Y(m)E{ijm) :u=1,2,..n/m}, where the elements of these

blocks. That is, series X™ andY{™, are given by Eq(1). We assume that
each of the two sequences of partial averages has zero mean
Xum-m+1F "+ Xym i i i~ i i
Xﬁm): ) (1)  to avoid unessential complications in the following calcula-
m tions.
For eachX™ series, we can define its variang&™, with For each pair of time sequences, the cross-covariance is

YV measuring the relative dispersion at each scalgt ~ defined in the following way:

has been observed that the ratio of the logarithm of n/m

WV /v to the logarithm of the scalmis 1—-D, whereD YA, 8)=— m E X(m)Y (5)
is the fractal dimension of the series. Hédds also related ' utA-

to the Hurst exponerft,’ H=2-D. _ _ N
The variance of the subserie€™, V(™  can also be Here,yY)(A, ) is the usual cross-covariance of the original

directly related to the autocovariance function, sequenceX andY. Now the problem is to relatg{™(0,) to
o yB(A, 8) in a way analogous to E@3). To do so, we must
VM ﬁ+ 2 E 2 " @ calculatey(™(0,8) in an explicit way:
2 .
s=1 A= n/m

This relation separates the short and long time lag contribu-  ¥'™(0,8)= - Z XMy (m
tions. For a random variabl¥, the first term on the right- u=t

hand sidgrhs) of Eq. (2) dominates, and in the limit of large n/m m

m, we obtain the Gaussian statistics result, that is, the stan- :mn > (E Xumemai (E Yum_m+j).
dard deviation decreases as one over the square root of the u=1 =1

number of samples. However, for processes with long-range (6)

time dependence, the second term may diverge in the farge
limit. In this situation,X does not verify the conditions of the EXxpanding and regrouping terms, we obtain
Central Limit Theorem, and&/(™ does not scale am ™. L L
Equation(2) can also be used to calculate the autocovariance M08 =—+1(08) + —
. .. . . . Y ( ’ ) Y ( ’ ) 2
function of the original series in terms of the variance of the m m
successive averaged subseries. Inverting(Bq.we obtain m-1 m-1

v = %&2(A2V(A)). 3) X 21 Azl [7(1>(A,5)+ y(l)(—A,5)]. (7

Here, the operato#? is the second-order central derivative

operator in finite differences; that is, This relation is a generalization of E(®). It relates the

radial correlation of the partial sums series to the radial cor-
P(f)=Ff  +fi_—2f. 4 relation at nonzero lags. This relation can be inverted in the

Equation(3) shows that the information on the variance for same way as it was done for B@), and leads to

all time series X(™ resulting from averaging the or|g|nal 2y4(m,8)= Y (m,8)+ yV(—m,8) = [m2y™(0,5)],
sequence is equivalent to the information contained in the (8)
autocovariance function for the original seri&s,Therefore,

for an infinite seriesy(™ provides an alternative equivalent where #? is the second-order finite-difference operator, Eq.
description of the second-order properties of the original sef4), and y,(m, §) is the symmetric component of the cross-
ries. The advantage of usingy(™ to determine the covariance. Equatiof8) tells us that calculating the cross-
asymptotic behavior of the autocorrelation function insteactovariance of the partial averages at zero lag is equivalent to
of using y,, directly is that the latter is a second derivative of calculating the symmetric part of the cross-covariance for a
the former. Therefore, small oscillations Y™ are ampli- finite time lag. For the autocorrelation, this method was ad-
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vantageous, because by taking the sums we eliminate some Serios X ana v
of the high frequency that we are not interested in and domi- / \
nate the correlations. N o T g )
The scaling ofy{™(0,8) with m provides further infor- 169 B 6) w(ms) Series X and
mation, as it was the case of the variance of a single series. 1 ) 1
When y™(0,6) falls off with m as a power,y(™(0,5) By (4.3) &(m) fitto g(m) ™ 09
~y1)(0,8)m™~, Eq.(8) gives N
A 1 (¥
¥s(M,8)~ 42— B)(1-B)¥™(0). © R =N L AL L

Here, we assume that28>0. Equation(9) shows that the
symmetric part of the cross-covariancg,(m,s), has the FIG. 1. Three different methods for calculating the symmetric component of
same power tail inm as y(m)(O,ﬁ). Therefore, to determine the cross-correlation function of two time series.

this power tail is easier to do it fop{™(0,8). If we try to

calculate it from the cross-covariance, we have to take two

derivatives ofy(”‘)(o,&), which clearly amplifies the noise. (1) A direct determination of the covarianc)él)(A,é)

The advantages of this method are similar to those when it igsing Eq. (5), followed by the calculation ofpg(A, &)
applied to the autocorrelation function. With this method, wethrough Eq.(11). This is the usual method of calculating the
have the level of correlation when a power tail exists, and itcross-correlation function. We denote the symmetric compo-
can be detected even for very low cross-correlation valuessent of the cross-correlation evaluated this way by
However, a caveat is needed. In the case of zero cross- .

correlation, Eq.(8) only gives zero equal zero. Using real  P1(8)=ps(4,9). (12
data, we do not get zero. Therefore, a determination of a (2) Once we have evaluateg™(0,8) as described
power decay exponent in this situation is misleading. Onlyabove, we tak&(m)=y(™(0,8). Alternatively, if we have
when the correlation is nonzero does the determination of thevaluatedb4(A, 8) by the previous method, we invert E@)

exponents make sense. by integrating twice; that is, we calculate

When the cross-covariance is a power function of the 5
time lag, we can introduce an effective cross-correlation g(m):7J J dApg(A,d). (13)
function based on Eq9). Dividing both sides of Eq(9) by m 0

the square root of the product of the variance of each seriegor all cases we have consideré(m) is a smooth function
we obtain the symmetric component of this cross-correlationgf m with a clear algebraic tail. We can do a fit to this

(2—B)(1—B) ¥™(0,5) function using a simple parametrizaticf(,m).lhen we can
ps(M,8) = > Nviaves (10 calculate analytically the second derivatives6fn) and re-
1 %2 cover a smoother form for the cross-correlation function,

where V{ and V{" are the variance for the two input L d2(7E
series. We determineB for each m by calculating Pz(A)E—Lz)
—In[¥™(0,8)/ ¥1(0,6)]/In(m). For 6=0, this is the pre- 2 dm

scription of the dispersional method, afe- 2D — 2. Having
B, we can calculate(m, §) from Eq. (10). This expression Pnd Yﬁm) as a function of time lagn Using Eq.(10) and 3

is only Val.'d for a simple power depgndence, butitis a usefudetermined by one of the methods previously discussed, we
measure if there are not strong deviations from a power law

In the latter case, we considgrto be a weak function of Obtain & third form for the cross-correlation,

and determine its value by doing a power fit over shuort pa(A)=py(A,H). (15
intervals. In analogy to the autocorrelation function, we can
define anH exponent for the cross-covariance bi=1

(14)
m=A

(3) We calculate the cross-covariance of the seN§§

In Sec. IV, we discuss an example of the second method
applied to the fluxes of a running sandpile model. In this

— B2 case, the cross-covariance of the i
. , - partial sup®,(0,8), can
£ Irl10whe_1thfollows, we compares(m, ) calculated using be approximately described over a broad range of time lags
q. (A0) wit by a function of the form
(1) (D —
ps(mM,8)= : (11 (m) ~_
Ps 2 WOV Y0~ T ma P (16)

where y™Y(m, 8) and yY)(—m,$) are calculated using the wherec; is a constant. We can use this analytical parametri-
direct definition of cross-correlation, E(). From this com-  zation to test the approximations discussed above. We have
parison, we can assess the advantages of usinglBgin-  calculatedy(™(0,5) for 8=1.7 andmy=700. In Fig. 2, we
stead of the direct determination of the cross-correlation. have plottedys(m,§) calculated from Eq(8) and its ap-
From the previous discussion, we have identified thregroximate form given by Eq9). We can see that the cross-

different methods for calculating the symmetric componentovarianceys(m, §) has a zero that distorts the algebraic tail
of the cross-correlation function. We have summarized thestor short time lags. However, the approximate form, £,
methods in Fig. 1. has a well-defined asymptotic tail, describes well the sym-
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100 ‘ , } : % TABLE I.
10—1 L~ Hin HX HV HCC
0.9 0.83 0.85 0.99
1072 0.7 0.66 0.69 0.96
= 0.5 0.52 0.52 0.82
w
g 10-3 L
P
107 time series. As a generator for these time series, we have
Sl — 0.5] Py used the method described in Ref. 18 and summarized in the
1075 0-5 0t — Appendix. In generating the fGn sequences, we need as input
. - 052 -B =B . a sequence of random numbers. Using this method, we have
10750 0 102 108 10° 105 calculated several fGn sequences of 10000 points. To test
Time Lag the reliability of the fGn generator, we have applied the R/S

analysis to these time series; the results are shown in Fig. 3.
FIG. 2. Symmetric component of the cross-covariamglm,d) calculated  |n this figure,H;, is the input value for generating the series;
from a cross-covariance™(0,8) given by Eq.(16) and for =17 and  the fit tg the R/S values shows the resulting valudofThe
g}%;i;(ﬁ'eﬁgfmﬂgﬂfn T)“y"VE“Z;()T“"” caleulated from Eq(8) and its 8- oqits seem to be in agreement with the usual R/S slight bias
toward the 0.7—0.8 range.

To calculate the cross-covariance, we have to generate
metric cross-covariance in the regions of power dependenceairs of sequences. We have considered two types of pairs.
and gives its value within a factor of 2. The same can be said (1) Two sequences with the same valueHyf,, gener-
for the cross-correlation given by E@LO) because it only  ated with independent random number sequences. We expect
differs from the cross-covariance by a normalization con+these series to be totally uncorrelated. The results of the cor-
stant. relation analysis of these series are shown in Table I. In this

In Eq. (5), the number of terms used to calculate table,H, andHy are theH exponents of the serieéandY,
¥™(0,5) decreases as/m when m increases. We have respectively, andHc is the correspondingi for the cross-
found that unlessn>n/10, the calculated/(™(0,8) is not  covariance.
reliable. In case of a noisy signal, it is also important to use  (2) Two sequences with different valuestéf,, but gen-
an ensemble average of several subsamples. Both conditioggated with the same sequence of random numbers. This
set serious constraints on the required statistics for thesshould create a correlation between the series. The results of
studies. the analysis of these series are shown in Table Il. The nota-

tion in Table Il is the same as for Table I.
lll. ANALYSIS OF CROSS-COVARIANCE BETWEEN For the time sequences of Table |, tHgc is larger than

SERIES OF FRACTIONAL GAUSSIAN NOISE both Hy and Hy, and it is close to 1. However, for the

After having developed a method of analysis for thesequences in Table Il, the exponent of the cross-covariance is
cross-covariance of two time series, we would like to usedetween the exponents of the two input series. The main
some model-generated series to test the effectiveness of teéference between the cases in Table | and Table Il is the
analysis. To better understand these techniques, it is useful t@vel of correlation between the input pair of time sequences.
start with fGn*! To do so, we first had to construct a fGn In the case of decorrelated sequences, the cross-covariance

tends to be independent aif, and its value decreases with
increasing numbers of samples that we average. This is re-

10t R I Rt g flected inH¢c having no relation to théd exponent of the
H._ =06 H=0.64 ] two input sequences. These results are illustrated in Fig. 4,
ne 1 where we have plottethy(™(0,5)| for H;,=0.5. We have
103 —%— Hip=07,H=072 4

ot plotted this function for a single sample and for the average
—+ - Hp=08H=079 a3 over ten samples. In doing the average, the valul ohly
--a-- Hi=09,H=086 1 changes from 0.8 to 0.76. However, the covariance value

S~ 2 - . B . .
e 10 decreases considerably, and the function becomes noisier. In
the same figure, we also comparé@’(0,5) with V(™ for the
10 L input series, showing the clear change in the functional de-
. . TABLE II.
100 o 102 10° 10
10 10 Hin Hx Hy Hee
Time Lag
0.9-0.6 0.82 0.57 0.71
FIG. 3. The R/S analysis of four fGn time series. In this figitg, is the 0.8-0.6 0.75 0.57 0.67
input value for generating the series ands the result of the fit to the R/S 0.6-0.6 0.57 0.57 0.57
values.
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FIG. 4. Cross-covariandg™(0,8)| for two H;,=0.5 time sequences for a

pendence om. If we look at both the autocorrelation and the

cross-correlation of this series calculated using @6), we
see that both are very low and oscilldtég. 5. The value
dgcrgages with the number of_samp!es that we average. All ?\f/ RADIAL CORRELATION OF FLUXES IN A
this indicates that no correlation exists.

When the time sequences are correlatedamples in
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107" e . . 107 102 K '
\‘~
102 [ S~o J1072 —
_ -§~“ B 101k m.ﬂ._“u__“-_“.u J
8 107 [ ‘~\~ E 10 8 F han IV 1
S c
g 10 104 8 g 10%¢
3
3 9 >
S (o8 ir 111!}' *exy  ]10° & 3
1] E By I 3 > —1 L
e N 1o g
O 108 L] \I | r 310 8 I —e— Cross Covariance e,
= = = Variance . 102k —=— Variance X 3
107  —e— 1Sample \, 410 E Vari Y
—= — 10 Samples \ ;T - Varance
1078 L : 1078 10—3 [ ) .
100 10! 102 108 100 101 102 103
Time Lag Time Lag

! | i 4 FIG. 6. Cross-covariance and the variances for two fGn correlated series.
single time sample and averaged over 10 time samples. The covariance

function is also compared to the variance of a single sequence.

noisy for longer time lags, and it is impossible from the
direct calculation to determine its functional dependence at
long time lags. Fopg(m, ), the oscillations and noise are
minimal over the whole range of time lags considered.

SANDPILE MODEL

Table 1l), (™(0,6) has anm dependence close to th&™ The running sandpile model has been suggested as a
of the original input sequences. This is shown in Fig. 6.paradigm for SOC turbulent plasma transport in magnetic
Calculating the autocorrelation for both series and theiconfinement devices? The sandpile model has the instabil-
cross-correlation using E¢10), we have a well-defined be- ity gradients represented by the slope of the sandpile, while
havior with m, and the three functions remain positive. This the turbulent transport is modeled by the local amount that

clearly indicates that both series are correlated, and we cdalls (overturng when the sandpile becomes locally unstable.
obtain an estimate for the correlation level using the thirdThe model system is driven by a random “rain” of sand

method described in Sec. Il; that is, applying E0) to

method proposed in this paper, that jg=ps(m, ) from
Eq. (10). Since the covariance in this case is a simple powetfistical samples.
law, the result of using the second method described in Sec. A standard cellular automata algoritfhis used to study

Il is identical to using the third method. This comparison isthe dynamics of the driven sandpile. The domain is divided
shown in Fig. 7. For time lags below 50, the two calculationsinto L cells, which are evolved in steps. The number of sand
give very similar results. Howevefis(m,5) becomes very

FIG. 5. Autocorrelation and the cross-correlation of the thg=0.5 time
series used in Fig. 4.

grains on the pile. This model allows us to study the dynam-
¥™(0,8). It is interesting to compare the symmetric com- ics of the transport independent of both the local instability
ponent of the cross-correlation function calculated directlynechanism and the local transport mechanism. Because of
by Eq.(5), p1=p<(mM, ), with the one calculated by the third the relative simplicity of the model, we are also able to do
very long time calculations and collect reasonably large sta-

o 10° : :
1o L 'fo“ o Direct Calculation
“ % —— Eq. (10)
i o
L o5 | ] 2 10|
k3 “ S
v 1 | g
Q
(&) Q 10—2 L
g 0.5 ' | y (é
S | || | | “ —e— Cross Corelation g’
. ' | | H —a ~ Autocorrelation E
_1’0> ":\ ol ln i @ 1073 ) )
10° 10! 102 10° 10t 100 10 102 103
Time Lag Time Lag

FIG. 7. A symmetric component of the cross-correlation function for two
fGn series calculated by the direct method and using(Eg).
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grains in a cell ish,,, called the height of celh. We take as /
radial position the value that identifies the cell. The local . 4
gradient isZ,,, the difference betweem, andh,, 1, andZ; , 7 <
is the critical gradient. The sandpile evolution is governed by 1
the following simple set of rules. (71 T
(1) First, sand grains are added to the cells with a prob- 7 | 3<| | AN
|
!

ability Py. For each cell, a random number<®<1 is /7 | |\
drawn, if p=1—Py; then 4 | \
1

hn=ho+1; @ v

otherwise, the height,, is not changed. N\
(2) Next, all the cells are checked for stability against a N
simple stability rule and either flagged as staldg<Z,
or not,Z,=Z.;-
(3) Finally, the cells are time advanced, with the un- FIG. 8. Three types of avalanches depending on the position of the starting

: : : “ o+~ point with relation to the two radial positions where the flux is measured.
stable cells overturning and moving their excess grains toThe vertical axis indicates the radial position in the sandpile and the hori-

another cell. That is, iZ,=Z, then zontal axis indicates the time.
hn: hn_ Nf y
hps1=hpe 1+ Ns. (18) correlation of fluxeg.In Fig. 8, we show in schematic form

) ) _ three different types of avalanches crossing the radius
Here,N; is the amount of “sand” that falls in an overtumning — . andr=r,=r,+ 8. We measure time in relation to the

event. In terms of the physical quantities that we a:ssociatia1 position. Avalanches starting at<r,, for example, at
with turbulent systems, each cell can be thought of as thggint 1 in Fig. 8, cross, with a time delayA = 8, while the
location of a local turbulent fluctuatiofeddy. HereZi is  gnes starting at>r,, for example, at point 2 in the same
the critical gradient at which fluctuations are unstable a”‘*igure, cross , at A= — & before reaching, . Therefore, we
grow, andN; is the. amount of “grgdient” that is transported expect the cross-correlation to have two maxima at— &

by a local fluctuation(local eqldy-mdl_Jce_d transport, for ex- anda=s, respectively. The relative height of these maxima
ample. The average sandpile profile is equivalent to thejs related to the relative probability of avalanches starting at
mean temperature or density profile, while the total number <y, p r.  versus the probability of avalanches starting at
of sgnd grains in the plléthe_ total masbls_the t(_)tal energy/ r<r,, Po(L—r,). Also, avalanches start betweenandr,
particle content of the device. At any given time, the localjjxe at point 3 in Fig. 8. For these avalanches, the time lag
flux at a radial position is either zero, if this position is jies in the interval— s<A <. These avalanches give the
stable, or ofN¢, if it is unstable. Time records of the flux at cross-correlation between the maxima and can result in fill-
different radial positions are stored during the steady-statg,q yp the minimum between them and giving just a flat
phase of the sandpile evolution. In the next section, we Wilkegion between the peaks.

a_\pply the technique_s described in Sec. Il to a_nalyze these  The change of the antisymmetric component of the
time records, in particular, to the cross-correlation of fluxes;ross-correlation function with a radial position is illustrated

in different radial positions. _in Fig. 9. In this figure, we have plotted the cross-correlation
An analysis of the sandpile fluxes has shown the exis-

tence of two characteristic time lag regiofisFor time lags
shorter than the time needed to cross the sandpile;L, 0.07 [ e
the Hurst exponent is about 0.8. This indicates the existence P ———140-180
of long-range correlations that are induced by avalanches. %%} ——=100-140
Similar values ofH have been found in the analysis of
plasma edge fluctuatiofigzor long time lags, longer than the
time needed to cross the sandpilet>L, the analysis of
sandpile fluxes gives values ¢f below 0.5. This corre-
sponds to long-range anticorrelations, which is an indication :
that once a large avalanche has happened, the probability of  0.02}
another large avalanche decreases. To detect if similar ef-

Cross Correlation
o
o
=

fects exist in plasma fluctuations requires very long time 0.01 ; .

records, longer than the ones used up to now in those types 0’7.. T D R T T

of analysis. -200 -100 0 100 200
In the sandpile model, each avalanche propagates both Time Lag

uphill and downhill?* This is a consequence of the mass , _ o
r%:IG. 9. The cross-correlation function of the fluxes of a sandpile With

conservation durlng the propagation; grains propagate dow =40 in relation to the radius af=140. The antisymmetric component of

hi"’ while “holes” propagat(_a uphill. This form of propaga- ine cross-correlation function depends on the relative positions of the sur-
tion translates to a particular structure of the cross+aces.
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FIG. 10. The cross-correlation function of the fluxes of a sandpile with
=20 in relation to the radius af=180. At the edge of the sandpile, there is
only one possible propagation direction, outward. In this case, the asymm
try is extreme and the cross-correlation larger than toward the inside.

FIG. 12. The absolute value of the cross-correlation functionsfe20 and

Jor three record lengths: $01C°, and 16 points. As the record length
increases, the power dependence of the tail before the first zero becomes
better defined.

function for a fixed radial separatioA= 40, at two different ) . 2

radii r, on the sandpile. As discussed above, the cross- FOrtime lags in the range of ﬁA<.3X1037 the sym-
correlation function has a clear peak &t +40. The anti- metric component of the cross-correlation goes through zero
symmetric component of the cross-correlation changes sig"d has a clear region of anticorrelation. For long time lags,
when we move from near the centef,=140 andr,= 100, A>10® the functionpg(A,d) is very noisy and oscillates.

to near the edge;;=140 andr,=180, because near the From this result, it is clear that we cannot use the direct
edge there are not many upward propagating avalanches afg§términation ofpy(A,4) to assess the functional depen-
downward propagation dominates. The avalanche propagzg-ence of the cross—correlappn at long time lags. For a given
tion in opposite directions also causes an increased decorré€t Of parameters, the position of the first zero does not sen-
lation. At the edge of the sandpile, there is only one possiblé‘t'vely erend on the specific reallzathn or thellength of the
propagation direction, outward. In this case, the asymmetrjme series for series lengths above paints. In Fig. 12, we

is extreme and the cross-correlation larger than toward th8ave plotted the absolute value of the cross-correlation func-
inside (Fig. 10. As & increases, the correlation decreasestion for =20 and for three record lengths: “10LC°, and

and the point of maximum correlationAJ,ay, Moves to- 10° points. As the record length increases, the power depen-
ward high time lags in such a way thah Y= 9. This is dence of the tail before the first zero becomes better defined.

shown in Fig. 11, where we have plotted the cross-1 he position of the first zero of the cross-correlation function
correlation function for a fixed reference position=140, depends on the value &%. As P, increases, the zero moves
and changing,. For the sames, the symmetric part of the to shorter time lags and the overall cross-correlation de-
cross-correlation is practically the same, while the antisym¢feases.

metric contribution varies with,, as was shown in more The results shown in Figs. 912 are for a sandpile of
detail in Fig. 8. lengthL =400, Z.;= 10, N;=3, and the evolution is driven

by a rain of grains with a probability varying betwegpg
=0.0005 angy=0.0025. The cross-correlation is calculated

0.25 T I sy in the direct way using the/Y(A, ) covariance given by
— 140-200 ] Eq. (5).
[ = —140-180 , 1
020 ——-140-160 . 4 ]
c ] V. ANALYSIS OF THE SANDPILE RADIAL
-(.93- 0.15 CORRELATION OF FLUXES
% In the previous section, we have discussed the properties
b of the y™(A,8) cross-covariance and cross-correlation
2 0.10 Y '
2 ps(A,8) of the sandpile fluxes. Both functions have been
§) [ .
calculated by the direct method. From the calculated
0.05 1 ps(A,8), it is difficult to discern the functional form of a
L high time lag tail. In this section, we test the alternative
0 : - determination of the long time lag tail of the cross-
-150 100  -50 0 50 100 150 correlation by the other two methods discussed in Sec. II.
Time Lag Since ps(A,5) has been already calculated, following the
FIG. 11. The cross-correlation function of the fluxes of a sandpile as asecond method, we can calculagém) by Eq. (13). This
function of & for a fixed reference positiom; =140, and changing,. function should be equivalent ty)(m)(O,b‘)/\/VlthVZ(Ij, calcu-
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FIG. 13. A comparison betwees{m) for the sandpile flux calculated using FIG. 15. A symmetric component of the cross-covariance function of the

Eq. (13) and »™(0,8)/\VIPVD, calculated independently by the third sandpile fluxes for different values of
method in Sec. Il

anticorrelation for all lags above the zero crossing. por

lated independently by the third method in Sec. Il. We havethe zero is always somewnhat higher than the other two meth-

plotted both functions in Fig. 13. The first interesting resuItOdf]’ b.eca]yse '(21)"{8 (;erl\_/raht!on, we ha_tve ?ssufm_tlad a povxg-z]r law

is that the functions are smooth and positive. The result oPe avior for y™(0,0). 'S approximation fails near the

both calculations agree well, and they show the existence ero. The change frorr} c)orrelatlon to autocorrelation can also
, ; m .

a power tail for long time lags. This result is particularly e detected directly in™(0.9) (Fig. 13 when the exponent

interesting given the apparently noisy character of theB becomes larger than 1.

ps(A, ) function, as shown in Fig. 12. The next step in thef -tr.o de;e;;mme tdhefl alf?ebralc t;ul caff;he ctross—g'c:'rrelatlon
second method is to fit by a simple analytical function, unction ot the sandptie fluxes under difterent conditions, we

E(m). We used the parametrization given in E46), which can look aty™(0,8). The results whem changes are plot-

id d fit for all th that h ' (ﬁed in Fig. 15. At each radial position, we have used six time
provides a good it for ail the cases that We have ConsIteredy, ., qs of 14 points each. For the different time records,

Once we have obtained the analytical forgitm), we can |, _(m 5) has a very similar dependence on the time lag; it
carry out the final step in evaluating the symmetric compojpes not oscillate or change sign. This is a clear indication
nent of the cross-correlation function by the three methodgnat a correlation exists. In Fig. 15, we can see how increas-
outlined in Fig. 1. The functiongpy|, |p,|, and|ps| are  jng the radial separations, changes the magnitude of the
compared in Fig. 14 for the average of three time records ofross-correlation. The cross-correlation decreases at short
10° points each. Botp, and p3 show the clear algebraic time |ags because the short avalanctiedength and dura-
tails at long time lags that it was not possible to identify injon) cannot cross both of the radial surfaces considered.
p1. They also show similar correlation levels in the region of therefore. as the separation increases, the peak=dt de-

the tail. Additionally, the three functions have a zero of thecreases, and the point of change)df(0,5) moves to larger
correlation function at about a time lag of 400. This indicatesg|,es of the time lag. This change, moving toward longer
time lags; corresponds to the shift of the peak of the cross-
correlation function, as shown in Fig. 10. The decrease in the
peak ofy{™(0,8) causes a flattening of this function at short
time lags, but its tail for long time lags seems to remain the
same. If the tail ofy{™(0,5) remains the same, regardless of
the value of§, the flux events associated with it are corre-
lated for relatively large radial separations. To better exam-
ine the structure of the tail for long time lags, we plotted in
Fig. 16 some functions of Fig. 15 in a logarithmic scale. The
agreement on the high time lag tails is clear, which is evi-
dence for the radial correlation of the long avalanches. We
can arrive at a similar conclusion by looking at the cross-
power spectrungFig. 17). The high-frequency range, associ-
ated with small nonoverlapping avalanches, is strongly
modified from the autopower spectrum. At high frequencies,
Time Lag the autopower spectrum falls off as ¢, with « in a range 2

FIG. 14. A symmetric component of the cross-correlation function of sand-to 4, while the Cross-power spectrum in the same range of

pile fluxes calculated by the three methods outlined in Fig. 1. The functionétr_eQuenCieS Sh0W$ strong oscillgtions with peaks at frequen-
Ipal, p,l, and|ps| are the average of three time records of pBints each. ~ cies of 16 and higher harmonics.However, the 1f and

100

107"

1072

Symmetric Component Cross Correlation
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FIG. 18. The cross-correlation of sandpile fluxes as a functiofi fof two

FIG. 16. A symmetric component of the cross-covariance together with the/alues of the time lagn= 10 andm=967.
variance for the reference position for the same cases as Fig. 15. The plot is
logarithmic scale to better examine the structure of the tail for long time
lags. probably an indication that once a large avalanche has oc-
curred, the probability of another large avalanche decreases.
The alternative methods for determining the long time
low-frequency ranges, which are associated with large-scalil can indeed give insight into the dynamics of the running
and long correlation events, are hardly changed. sandpile. Here, we have limited the study to show the effec-
It is interesting to compare the level of cross-correlationtiveness of these methods. The implication of the analysis for
as a function ofé for short time lags(decorrelation of the the sandpile dynamics will be discussed elsewhere.
fluctuations and short avalanchesnd for long time lags
(correlation of large eventsWe can see in Fig. 18 how the VI. CONCLUSIONS
correlation at short time laga(=10 in the figure¢ decays
systematically withs, while at longer time lagsni=967 in
the figure it stays at a constant level.

The extension of the method to investigate long-range
dependence in a single time series to the cross-correlation
function has been shown to be effective. Two possible new

Thzta" o;they .(t?l’a) funcho; at.Iong t|tme Iagls:as;l methods have been suggested. With both methods, and for
power dependence with expongharying between 1.3 an time series with long-range time correlations, we are able to

1.7 for the different parameters considered. As previousl¥ prove the accuracy on the determination of the cross-

indicated, the autocorrelation tails have the same type 0g;rrelation for long time lags. For both fractional Gaussian
power dependence. In the case of the autocorrelation, tqg?

i id int tation for the t f | oise and fluxes in a running sandpile model, these new
e€xponent provides an Interpretation for the type ot corre a'analysis techniques allow the detection of cross-correlation
tion. This § range correspo_nds_ to.a range in the Hurst €XPO%ils well beyond the values of the time lag for which the
ngnt from 0.'35 0 0.15, Wh'ch |nd|cates_ tha_t the ev_ents In t.h sual cross-correlation function is dominated by noise. Using
tail are anticorrelated. This interpretation is consistent Wltht

th lation havi d bei i it he usual determination of the radial cross-correlation func-
€ cross-correfation having a zero and being negative a ht‘?on, it is normally difficult to detect those long-range time
long time lags. Therefore, for the sandpile fluxes and tim

e ; -
) . dependences because of the oscillatory behavior of the cross-
lags longer than 1000, the events are anticorrelated. This Correlation tail, its low level of coherence, and the noise
contamination.
This approach could be useful in identifying radial cor-

103 T T T T . . . . }
relation of transport events in magnetically confined plas
o’ mas. Such types of events are expected if plasmas satisfy the
102 ¢ 3 SOC paradigm. In this case, transport is dominated by ava-
lanches. Transport by avalanches is characterized by a broad
2 g0l ] range of radial scales. This range of scales should appear as
£ an algebraic tail in the radial autocorrelation function. Such
(] . . . . .
a an identification could be done by applying the techniques
g 100 : ; . . )
© described in this paper to simultaneous measurements of
y fluctuations at a few radial positions. At present, such work
1077 ¢ 3 is in progress.
1072 . ‘ . ﬂMl APPENDIX: FRACTIONAL GAUSSIAN NOISE
1075 1074 1072 1072 107! 100 . _ . . .
Frequency Let us consider a particle moving on a line and taking a
step =£ every unit of time. If the step length is a random
FIG. 17. The cross-power spectrum for sandpile fluxes Wi20. variable with Gaussian probability distribution function
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(A1) variables with unit variance and zero mean. Here, each inte-
ger time step has been dividedririntervals to approximate
then the sequence of independent Gaussian steps is callét¢ integral and the Gaussian noise is averaged kiveme
Gaussian noise. The position of the particle after a time Steps. Therefore, the number of time steps taken over which
=rm is given by the Gaussian noise is averaged should be increased with the
series length. The number of intervats,controls the accu-

1 p( 52) Here,{&} withi=1,2,...M,..., is a set ofandom Gaussian

m
racy. A more detailed discussion of the fGn can be found in
By(t)= Z &, (A2) y
i=1 Ref. 18.
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