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Intermittency of plasma edge fluctuation data: Multifractal analysis
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Plasma edge fluctuations show a degree of intermittency similar to fluid turbulence. Using
fluctuation measurements obtained with Langmuir probe data from two confinement devices, it is
shown that plasma fluctuations have a multifractal character over the fluctuation range of scales with
intermittency levels comparable to the levels measured in neutral fluid turbulence. In the mesoscale
range, that is, for time scales between 10 times the turbulence decorrelation time and plasma
confinement time, plasma fluctuations have a structure closer to a monofractal with very low
intermittency. © 2000 American Institute of PhysidsS1070-664X00)00308-4

I. INTRODUCTION Kolmogorov self-similarity to theB,” random B? and
binomiaP models that introduce the fractal and multifractal
Plasma edge fluctuations and induced fluxes measured ttbncepts.
several types of confinement devices are self-similar over the |n understanding plasma turbulence, we often resort to
mesoscale range of time scalésthat is, for time scales analogy with neutral fluid turbulence as a paradigm to work
between 10 times the turbulence decorrelation time an@nder. This can be very beneficial for visualizing the turbu-
plasma confinement time. The self-similarity parameter varfence and turbulent transport but if wrong could be very
ies little from one device to another. At shorter scales, in thenisleading. While we know there are some similarities be-
fluctuation range, there is not an exact self-similarity of fluc-tween fluid and plasma turbulence, for example, the nature of
tuations and fluxes and the degree of self-similarity breakinghe nonlinear transfer of energy in certain nonlinearities, we
is not clearly defined. On the other hand, there is some evialso know there are some differences. For example, plasma
dence of intermittency in the fluctuatioAdhis experimental turbulence has more nonlinearities and more distributed driv-
evidence suggests a different scaling of the plasma turbulemtg and dissipation ranges. Hence, it probably has a very
fluctuations in different time scale ranges and the possibilityimited or nonexistent inertial range. Therefore, we do not
of more complicated structures than a single fractal structureeally know if overall this paradigm is valid. To aid valida-
On the basis of a very simple hypothesis, Kolmogorovtion (or discounting the neutral fluid picture comparisons of
deduced the self-similarity of the turbulent velocity fluctua- the dynamics must be made at as many levels as possible. To
tions and the definition of the inertial ran§é.ater on, ex- do this one needs a variety of measures of those dynamics.
periments on neutral fluid turbulence have shown the break- While it is interesting to pursue the investigation of the
down of self-similarity for moments of the velocity structure similarity structures in plasma turbulence in the hope of
function larger than 3. Multifractal analysis has been a pow-gaining some understanding of the basic mechanisms under-
erful tool in understanding those deviations from self-lying the plasma turbulence, in using the multifractal analy-
similarity.>® This evolution in the understanding of fluid tur- sis, we may also hope to clarify comparisons between
bulence has also led to the development of simple physicgllasma and fluid turbulence. Because in plasma turbulence
models that bring a level of understanding into this compli-there is more than one type of nonlinearities with different
cated field; from the simple eddy mitosis model based on thepectral cascade directions as well asEheB nonlinearity,
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which has a nonlocal characterkrspace, it is not clear that ORNL 2000-998 EFG
we can attain such goal. 0.2 i " T :
In designing the analysis tools used in the present study,

we have followed the Menevau and Sreeniva8analysis of 0.1
fluid turbulence. We have also followed some of the methods
suggested by Daviet al.* who developed the multifractal 0

formalism for more general applications. A first question to
resolve in starting the present analysis is what is the relevant € —0.1
measure that we should apply to the plasma fluctuation mea-

surements. The obvious answer lies in the physics that we -0.2

want to consider. In three-dimensional fluid turbulence, the

intermittence is a characteristic property related to the energy -0.3.

dissipation scales. The studies of intermittency are normally

focused on the energy dissipation rate, which is defined as -0.4 L L " "

, 1.0 1.2 1.4 1? 1.8 2.0
_ v [dup  du; Time (x 10%)
E_Z(an+aXi> ’ (1)

FIG. 1. Density fluctuations inside the shear flow layer for the discharge
Here,u; is thei component of the fluctuating velocity and ~ number 35427 in the W7-AS stellarator.

is the viscosity. Regretfully, there are no direct Measurey, ctuations. The simplest way to find out is by direct visu-

ments of energy dissipation rates. To make a reasonable es-__.. . . .
. : . —alization. In Fig. 1, we have plotted the floating potential
timate of them, two assumptions are usually made. The fir : . . .

uctuations as a function of time. This measurement has

213:llflr:vrx)/tlrzrc])t;cs)r:hh?st?ﬁedsearxztli\;?o(r)r;g:i%r:/igiﬁ)é ?jlr ?gﬁls;c:been done at the plasma edge of the Wendelstein7 Advanced
" Stellarator (W7-AS).*? In Sec. Ill, we discuss the details

The second assumption is Taylor's frozen-flow hypOtheSISabout these fluctuation measurements. Here, we take the ion

which allows us to take a time derivative instead of a SPAC%aturation current fluctuations as equivalent to density fluc-

derivative parallel to_the flow. Based on these assumptlon%ations and use the floating potential measurements in two
Menevau and Sreenivasdnake as a measure . . . . .
poloidal positions to evaluate the fluctuating radial velocity.

du;\? A simple visual inspection of the signal in Fig. 1 indicates
W) (20 some degree of intermittency. However, when we plot, for

the same data, two of the measures discussed previously, the
From the measurement of one component of the veloeity, intermittency of the signal is rather more apparent. We have
can be estimated through E@). plotted [—())?/((H—(A))?) in Fig. 2@ and (V,

In plasma turbulence, we do not have a starting point_ (¥ y)2/((/,—(¥V,))?) in Fig. 2(b) for the same plasma dis-
like the Kolmogorov invariance properties. We can only charge and time as shown in Fig. 1. The angular brackets,
make some tentative assumptions about what could be a regy  indicate time average over the whole time record. These
sonable measure. For instance, we can consider some M&fots in Fig. 2 are quite similar to plots of the normalized
sure of the energy such as the density fluctuation squared @nergy dissipation rate in fluid turbulent&Therefore, both
the radial velocity squared. We can also consider some quaneasures may provide a reasonable description of the inter-
dratic form analogous to Eq2) and take the square of the mittence properties of the plasma edge fluctuations. Further-
time derivative of the fluctuations. In this analysis, we havemgre, they are an indication that, in plasma edge turbulence,
tested several measures and we will compare them in Whatermittency may be as relevant to the dynamics as it is in
follows. fluid turbulence.

Another issue in defining those measures is that we can-  The rest of the paper is organized as follows. In Sec. II,
not use an equivalent assumption to Taylor's frozen-flomye present the analysis methods for single and multipoint
hypothesis. For instance, in a wind tunnel, turbulence is gemyctuation measurements. The data to be analyzed are de-
erated at the grid position and the flow carries the turbulencgcriped in Sec. IIl. In Secs. IV and V, we discuss the results
across the measuring point. Therefore, measurements takgfithe analysis for the temporal scales. The results for poloi-

at different times at a fixed point are equivalent to measurega| length scales are described in Sec. VI. Finally, we present
ments at different points along the flow. This is not the casgy; conclusions in Sec. VII.

of plasma turbulence. In this case, there is generation and

damping of turbulence at the same position where measurél SCALING OF SINGULAR MEASURES

ments are taken. Therefore, it is not possible to clearly sepa- In the study of plasma edge turbulence, we have basi-

rate between poloidal and temporal structures of the turbueally two types of fluctuation measurements, the ion satura-

lence with a single-point measure. Here, we consider botlion current and the floating potential. We will assume that

single-point and multipoint measurements to try to sort outhe fluctuation component of the first one is equivalent to

between these two types of scales. plasma density fluctuations and the corresponding fluctuation
For the moment, we can ask whether the measures pr@omponent of the latter is equivalent to the plasma potential

posed reflect any intermittency of the plasma turbulencéluctuations. From the latter, when we have more than one

€~
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ORNL 2000-999 EFG Given a time series of density fluctuations;;
20 @ I * ' ' i=1,2,...N}, we calculate the measure
o (n=(n)?
eli)y=7—F—>, i=12,..N, 7

18y - A== N "
o
= where
E 10 ] B ,
S (= ()%= 2, (ni—(m)? ®
=
\Cr The next step is to calculate the measure over different time

scales. To do so, we averagfl,i) over subblocks of data of
a length(duration) T and we define

T-1

1
20 : ; : ; e(T,i>=?j§O e(Li+]j). (9)

The averaging can be done over nonoverlapping blocks or
15 1 blocks with some degree of overlap. When analyzing simple
multifractal structures created by computer modeling, the

nonoverlapping blocks worked well. However, in practical

10} . applications using experimental data, sometimes the results
are too noisy. We found that the results can be improved by
allowing overlap between subblocks as a way of increasing

(Ve (V V)

5} the statistics. Using numerical data from multifractal models,
we have verified that both techniques produce the same an-
swer.

10 The next step is to calculate tlygpower of the measures

1.0 1.2 1.4 1.6 1.8 2.0 over the scald, «(T,i)9, and average over the indexnum-

Time (x 10%) ber of block considergdo obtain theg-moment( e(T,i)%).°

The self-similarity(or self-affinity) of the fluctuations imply
FIG. 2. (a) Square of the density fluctuations normalized to its mean valuethat these moments scale as power of the time stale
for the same data set as in Fig.(b) Square of the radial velocity fluctua-
tions normalized to its mean value for the same data set as in Fig. 1.

T\ KA
) (10

<E(T,i)q>~(ﬁ

point measurement, we can derive the velocity fluctuations\.Nhat we are looking for is the exponekit(q). We use the

Having this information, we can construct the following Subindexs to indicate tha’g the _scalmg is over time scales.
Note that for a pure self-similarity cagmonofractal behav-

measures: . } . )
ior) K.(q) scales asymptotically as a linear function gf
en=(M—())?((T—(7))?), (3)  The multifractality is reflected in the nontrivial dependence
o miiam a2 of K, onq. Note thatg does not need to be an integer or even
€p=(d (D)) T((P—(P))%), @ 3 positive number. Knowing thi€ . exponent, we can define
ev=(V=(V))?I(V=(V))?). ©) KA(Q)
CAa) 11

We also consider the corresponding measures for the time - g—1

derivatives of the fluctuations. For instance, in the case of the . .
density fluctuations, we define and the so-called generalized dimensfbon

€sn=[ (dR/dt) — ((dR/dt))]%/([ (dP/dt) — ((dP/d1))]?). (6) DA(q)=1-Cy(q). (12

In order to explore the multifractal character of the The parameterC_(1), which is calculated asC.(1)
plasma edge fluctuations, let us now consider the scaling o#dKT(q)/dq|q:1 to remove the singularity, is called the in-
the previously discussed measures over different scales. bermittency parameter. This parameter varies between 0 for a
this paper, we investigate separately the scaling over timenonofractal structure and 1.
scales and over poloidal scale lengths. For this reason, we The generalized dimension is known under different
first formulate the analysis for the scaling over times, be-names for particular values of For instancepP ,(0) is the
cause this formalism is simpler since it corresponds to dractal dimension for support of the measuig,(1) is the
single point measurement. In formulating the analysis apinformation dimension, an® ,(2) is the correlation dimen-
proach, we use as an example the case of the density squaien. Again, for a monofractal, all of them have the same
measure. Similar definitions carry over for other measures.value. The variation ob . with g gives an indication of what

Downloaded 29 Aug 2011 to 137.229.53.151. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



Phys. Plasmas, Vol. 7, No. 8, August 2000 Intermittency of plasma edge fluctuation data: . . . 3281

the degree of multifractality of the system is. Therefore, ORNL 2000-1000 EFG
these functions ofy characterize the multifractal nature of < C T l 7]
the measure. 11020 ¢ . c 0
. . & L * 5 Digits
To test the analysis code used for the evaluation of the € 16 I = 6 Digits 1
generalized dimension, we have used multifractal models for 8 107 F ® * Full .
which the generalized dimensions can be analytically calcu- g 1012 C ¢ A
lated. We use the Mandelbrot approféir a simple genera- & £ I ]
tor that is recursively iterated. The simplest generator with g 8 ¥ . 3 -
structure has three segmefitgp-down-up. The analytic re- 5 10° . n
sults are well reproduced by the analysis. ;E, - E E « o « " . E
Let us now turn to the determination of the scaling over g - ° * s 4
the poloidal scale length. We use data from multipin probe § 100 - (a) i \ :
measurements that will be described in Sec. Ill and we have
generalized the previous analysis technique for the multi- < T T T
point measurements. This probe measures simultaneously the g. 108 'E- AN -
ion saturation current fluctuatiohs, and the floating poten- g - * . B
tial, ®;, in 2M points which are poloidally separated by a g 4
fixed length. From each of these measurements, we kave 5 107 F * k
data sequencesF;={f(j);i=1,2,..N} with j=1,..M. § r v .
Here,f is eitherls,®, or some other derived quantity. The = 102 | .
index j gives the poloidal position and the indéxs the 2 .
index of the time sequence. We can now construct a measure $ 3
generalizing Eq(3), S 100 (b) N
. S \q2 = ] ] ]
e(Liy= DDV ) N =1, 1% 10t 102 10 10t
([H)—=(fi(i N1 Length

13

Here, the angu|ar bracket$>, indicate averaging over po- FIG. 3. (8) Theq= —4 moments of the square of the time derivative of the

. " . . . _ density fluctuations for a numerical data set with different numbers of digits
loidal positions] and times. We can now evaluate the mea resolution.(b) Theq=4 moments of the square of the time derivative of the

suree(L,i,j) over poloidal separations of length density fluctuations for the same numerical data set with different numbers
L—1 of digits resolution.
oo 1 .
e(L,I,J)=E2 e(Lj,j+k) (14)
k=0

terpretation of the results. The problem is linked to the num-
for each poloidal position and each time. Then we calcu-  per of significant digits in the measurement. This number is
late the corresponding moments of these measureimited by the gain used in the measurement and/or digitali-
(le(L,i,j)|% and perform an average over the indice®idj  zation of the data. This has an important impact on the nega-
for fixed L. Again we are looking for the scaling of these tive moments of the measure. A fair indication of this prob-
moments withL. If they scale as a power, lem can be obtained by looking at the moments as a function
L\ K@ of T. We have used some numerical data from simple turbu-
(e(L,i,] )q>~(— , (15 lence model$50 000 data poinjsto test the effect of reduc-
M . - . .
ing the number of digits characterizing the elements in a data
we can determine the exponeli(q) and the associated set. Two tests have been done by multiplying each element
intermittency coefficientsC,(q), and generalized dimen- in the sequence by £@and 1§ in the second testnaking it
sion, D|(q), using relations analogous to Eq3) and (8).  an integer and dividing it afterward by 40In this way we
We use here the subindéto indicate that the scaling is over are limiting the number of digits representing each element.
poloidal scale lengths. The original data had nine digits. In Fig(a3, we have plot-

For negative values of, the moments of the measure ted theq=—4 moment of measure for the three cases. De-
are dominated by the smallest events. Of course a seriowspite the fact that there are no identical cancellations for any
problem appears if one term in the sum is zero. In this case&f the calculated moments, one can easily see the strong
the negative moments diverge, as can be seen fronflBy.  effect that cutting the digits has on the slope of the moment.
This is a serious problem for the moments of the structurddowever, there is no discernible effect for positive values of
function. It is somewhat unlikely for the moments of the q [Fig. 3(b)]. The extreme sensitivity of the negative mo-
measure to be identically zero because they result from aments makes it very difficult to imagine that they can be
average over scales. In spite of that, in some situations, thepgoperly evaluated in the case of experimental data. We
can be very small contributions. Additionally, if the mea- therefore emphasize the positigenoments.
surements are not a continuous function of tiflemgth, the To determine the exponents that characterize the multi-
g<0 moments reflect the time resolution and the discretizafractal structures, the moments of measure must behave as a
tion of the measurement. This behavior may cause a misirpower for a reasonable range of valueslTadndL. We take
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a range that covers at least a decade to be a “reasonable” 3 ORNL 2000-1001 EFG
range of values of andL. We will discuss in each case the 10 g == 0 T
range of scales used in the analysis. ' n o (dn/dt)? ]

ln2

IIl. DATA ANALYZED

-t
o
N
i |

We have applied this analysis to plasma edge fluctuation
data from the Wendelstein 7 Advanced stellar@i7-AS)*?
and the TJ-I tokamak! In both cases, the data were obtained
with Langmuir probe measurements.

In the case of the W7-AS stellarator, we use data from a
reciprocating multipin Langmuir prob:!® This probe has
16 pins distributed in the poloidal direction; 8 of them are .

. ]
) . - 0 Lo 002 8wl
used to measure the ion saturation current fluctuatibns, 10
i : : 100 10 102 108 104
and the other 8 to measure the floating potential fluctuations,

@, . Details of the experimental setup can be found in Ref. N

15. The separation between the closest pins measuring tls. 4. Theq=4 moments of the? and @n/dt)2 measures for the data set
same type of fluctuations is 0.4 cm, except for the two lasfrom discharge 35427 in W7-AS.

pins, which are separated 0.8 cm. Therefore, with this probe

we can study poloidal scale lengths varying between 0.4 and ) ) N

3.6 cm. This range is close to a decade of variation for théhe radial range 0.9dr/a;<<1.08. The radial position of the
poloidal scale length. Because the probe is a reciprocatin§dge plasma shear layerds. In TJ-l a;~10cm, therefore,
probe, it moves from the scrape-off layer to inside thethe radial range considered is less than 2 cm. Because of the
plasma, covering a distance of about 6 cm in each dischargghort record length, for this data we can only study the fluc-
The sampling rate is 0.5 MHz and each pin takes 800 ooduation range of scales. This range is from 1 to about/1€0
data points in time. We have analyzed the data sets corre-

sponding to discharges 35427, 35432, 35484, and 35543y. SCALING WITH TEMPORAL SCALES OF PLASMA

These discharges have been selected because the meas@BGE FLUCTUATIONS

ment includes a sizable randg2 cm) of the edge plasma ) ) i ,
region. For most of the analysis, we break those sets into 40, In this section, we first consider the results of the analy-

subsets of 20000 points. For each of the data sets consiglS taking single-pin measurements in W7-AS. We use this

ered, the probe has only moved about 1.5 mm. Therefor ata to find the scaling properties of the fluctuations over
they can be considered nearly stationary. In this way, we ca ifferent time scale ranges. _The first question to resolve is
do a radially dependent analysis of the similarity propertied€ range of scales over which the moments of the measure

of the fluctuations over both temporal and poloidal scalesSCale as a power. At short scales it is easier to define such a

We normalized the ion saturation current fluctuation to its'2"9€ For large values 1 the moments of measure tend to

time-averaged value in each subject to avoid effects causetfrurate at coqstant value. T_h|s is a general re§ult for all
by changes in the size of the pins. measures considered. In the first study of the scaling ranges,

For these discharges, the decorrelation time of the fluc?® used a record length of 150 000 points. We subtracted a

tuations is about 1@s. The time interval considered for each trend in the data caused 'by th? motion of the .reC|procat|ng
one of the 40 subsets is;ds<T<10ms. Therefore, we can probe. The reason for taking this large sample is to cover as

studv both the fluctuation rana@€10us) and the mesos- Many decades of temporal scales as possible. We have cal-
caleyrange'['zloo,us) of timegsc{aglesﬂ ) culated the moments of measuigT,i)%)*d for the differ-

The analysis techniques described in Sec. Il are applieﬁm measures defined in Sec_. Il In plot_tmg the_ data, we have
. . .~ . . taken the 1 power to make it easy to fit them into the same
to the ion saturation current fluctuationg, which we iden-

) . : . . ., plot. As an illustration of the problems encountered, in Fig.
tify with the density fluctuations, to the floating potential 4. we have plotted the=2 moments for the1? and the

fluctuations,®;, and to the poloidal electric field fluctua- (dn/dt)2 measures. In the latter case, we can see a reason-
tions, which we define a&,=d®;/36. The latter is ob- aple range ofT values for which(e(T,i)% is a power
tained from the measured potential by taking differences befunction, 1<T<200. A power-scaling range is more diffi-
tween measurements done at the closest poloidal positiorsilt to find for then? measure. Therefore, we see that the
and neglecting the electron temperature fluctuations. Thedn/dt)2 measure may be more adequate thanrthenea-
fluctuating poloidal electric field can also be interpreted as &ure to quantify the multifractal properties of plasma fluctua-
measure of the fluctuating radial velociy,= —E,/B. tions. We can see also in Fig. 4 that f6r-10% that is for

We have also analyzed a radial scan using a fixed probéme scales longer than 1 ms, there is a saturation of mo-
through a sequence of nine discharges in the TJ-I tokdfhak.ments. The same considerations apply to the other measure,
This sequence goes from discharge number 49825 to disuch asb? andVrZ, the derivative square has a clearer power
charge number 49 833. The data have a sampling rate of 1dkependence range. However, the discrepancy is more signifi-
MHz and collect a time sequence of 4000 points. They covecant for the density square measure. It may be that in the

4 Moment

q =
—_t
=

1
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ORNL 2000-1002 EFG ORNL 2000-1004 EFG
102. e . — 025 A S . I T
1 -6
2 7 0.20
+3 =8 [
« 4 9 I
g\ ; 5 .10 o 015
= 102t— : s E Z;"
g . 1 % 0.10 F
o v e B 9
. ’ s v s a
. . X : ' 0.05 :
100 P S-S 0 L.
100 10! 102 0.25
T L
FIG. 5. 14 power of the moments of thal(/dt)?> measure in the fluctua- 0.20 i

tion range of time scales for the same data as in Fig. 5 showing a wide
spread of values for the slope.

0.15 |

SOL, plasma density is low and the density square does not g,
represent the energy transfer for the fluctuations. 0.10 rriftr
In Fig. 5, we have plotted the d/power of the I>q
>10 moments of thedn/dt)?> measure in the power scaling

0.05 | y

range. For a monofractal structure, all curves should collapse [ ]

into a single one. Clearly, there is no collapse of the mo- i ]

ments into a single curve. Thereforé,(q) is a nontrivial 0 Pt b e
) ; -2 -1 0 1 2

function of g and the data analyzed has a multifractal char-

acter. The same result is obtained for all the other measures. r—rs (cm)

We can repeat the calculation of the moments for theFIG. 7. Intermittency paramet€ (1) as a function of the radial distance to

mesoscale range. In this range, the moments of measure ame zero phase velocity point in the shear layer for the three measures de-
nearly independent of (Fig. 6). Therefore, if we assume fined by Egs.(3)—(5) and for dischargesfa) 35427 and(b) 35432 in

that the moments of measure scale as a power in this tim&7-AS.

scale range, the exponent is practically zero. Since all mo-

ments collapse into a single curve, the measure reflects a

monofractal structure in this range of scales. Again, the samgnalysis by breaking the full data sets into 40 data subsets of
results are found for all the other measures considered herg0 000 points. We focus the analysis on the fluctuation and

Let us now turn to the determination of the scaling ex-mesoscale ranges separately and we study the radial depen-
ponents. To do a quantitative determination and avoid anglence of the main scaling exponents.

problem with the motion of the probe, we have repeated the  We first consider the fluctuation range. For this range
and in Fig. 7, we have plotted the intermittency parameter
C (1) for the three measures as a function of the radial dis-
tance to the zero phase velocity point in the shear layer. The
plot is for data from two different discharges. In both dis-
charges, the three measures give very similar values for the
intermittency parameter and this value is close to the one
obtained in the analysis of fluid turbulence. This parameter is
0 for a monofractal structure and its possible maximum value
100 L #4eseecesssnssnsssssnsssessscsseseesy is 1. It is difficult to make an accurate determination of the
errors involved in the calculation of (1). In Fig. 7 we
have only included the statistical errors from fitting the mo-
ments of measure with a power function.

Using the time derivative measures, one obtains compa-

ORNL 2000-1003 EFG

10!

)
HWON =

(e(T,i)3ya

107" 35666 rable levels for the intermittenayrig. 8). These results show
1000 that the calculated value for the intermittency is relatively
T robust.
FIG. 6. 14 power of the moments of thel(/dt)2 measure in the mesoscale From this analysis we can evaluate the generalized di-
range of time scales for the same data as in Fig. 5. mension for the plasma edge turbulence. The calculated val-
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FIG. 8. Intermittency parametér,(1) as a function of the radial distance to |G, 10. Values ofp, obtained by fitting the generalized dimension ob-

the zero phase velocity point in the shear layer for the three time derivativgained for the three measures applied to discharge 35 427 in W7-AS.
measures and for discharge 35427 in W7-AS.

) ] ) . We have used this expression to fit the calculated gener-
ues for the generalized dimension can be compared t0 a flfji;eq dimension at each of the 40 radial positions. In gen-
using the binomial modél.This model has been used to

eral, this model fits very well the generalized dimension cal-

interpret cascades in fluid turbulence. The model is a genegyjated from the fluctuation data. However, since we do not
alization of the eddy mitosis model and it is characterized by, ,de negative values df, the fit is less constrained. An

a single parametep,. The model assumes that each eddygyample of the fit for one of the data subsets of discharge
breaks into two pieces and that each piece receives a fractiofy; 457 is given in Fig. 9. The values pf obtained for the
0.2, or 0.25(1-p,) of the flux of kinetic energy. There- 00 measures applied to this discharge are plotted in Fig.

fore, the parametep, varies between 0 and 1 and is a mea-1 Qver the entire range considered, the valuepofis
sure of the asymmetry in the cascadep{t=0.5, we recover

the eddy mitosis model and the monofractality. The procesg,nce.
continues iteratively, and at each step the distribution of en— 710

somewhat larger than the values reported from fluid turbu-
In that case, the values obtained are clos@;to
The mean values op, obtained for the different

ergy between eddies is a binomial distribution. Therefore, it,,casures and for the two discharges considered here are

is possible to calculate analytically the generalized dimen

sion

_In[pd+(1-py)°]

D@=—1=gn2)

(16)

ORNL 2000-1006 EFG

15||

10F )

Generalized Dimension
7
e

R

FIG. 9. Generalized dimension as a functiongofogether with a fit done

with the binomial model.

given in Table |. Thet indicates the standard deviation of
the values ofp; for the 40 radial positions considered. The
error in the determination of each of thy values is, in
general, larger than the dispersion of values, but difficult to
determine. The statistical error from fitting the data with Eq.
(16) is on average 0.04, that is, of the same order as the
radial dispersion. Within the 0.04 averaged dispersion, all
values obtained are consistent. They also seem to be inde-
pendent of the measure chosen.

The mesoscale range scales correspond to time scales
longer than about ten times the decorrelation time of the
turbulence, in this particular discharge we take times longer
than 0.1 ms. The self-similarity properties for this time scale
range have been discussed in Ref. 1. In this time scale range,

TABLE |. Parametemp, determined from fitting the generalized dimension
associated with temporal scales and poloidal scale lengths from two dis-
charges in W7-AS and for the three measures used in this paper.

35427 35432

Measure Temporal Poloidal Temporal Poloidal

7?2 0.77+0.04
P2 0.75+0.03

V2 0.76+0.04

0.82:0.02
0.73:0.05

0.810.03

0.720.04
0.73:0.03

0.76:0.04

0.79-0.03
0.72£0.05

0.88-0.03
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FIG. 11. Moments of square derivative of the density measure for data takefi!G- 12- Intermittency coefficier€ (1) as a function of the radial distance
at plasma edge for discharge 49 829 in the TJ-I tokamak. to the zero phase velocity point in the shear layer for a sequence of dis-
charges in the TJ-1 tokamak.

the moments of measure are practically independent of

(Fig. 6 and as a consequence the intermittency coefficient iy saturation current fluctuationk,, the floating potential
c_onS|derany smaller_than ||_1_the fluctuation range. It is prac'fluctuations@f, and the radial velocity quctuationsVr
tically zero at all radial positions. The change of the gener- ~~ — . . .

alized dimension witly is also found to be very weak in this — —E,/B. The latter is evaluated as described n sec. Il
range. It is difficult to determine whether this variation is real Because of the_ probe structure, we ha"? only el_ght length
or the fluctuations just obey a monofractal behavior withinSCal€S Over which to test the power scaling. In Fig. 13, we
the error bars of the calculation. This result clearly contrast{@Ve Plotted several moments of measure for the floating

with the one obtained for the fluctuation scale range wher&©t€ntial measurement. In the same figure we also show an
the structure is clearly multifractal. example of a power fit to these moments. The moments of

To test the generality of the previous results, we havdneasure are consistent with the power dependent fit, but fur-

also analyzed plasma edge fluctuation data from the TJ_tper' experiments covering a broader'range of scales would be
tokamak. As discussed before, the record length of the TJ_qieS|rabIe to prove such power scaling. However, those ex-

data is short, 4000 points. Therefore, we can only study th eriments _Wi” not be easy_because they require either a
fluctuation range of scales. This range is from 1 to about 10 rger poloidal probe or multiple probe measurements along
the poloidal direction. The increase of the poloidal extent of

us. In Fig. 11, we have plotted the moments of measure, . o .
(e(T,i)%. The measure used is the density square measurg?ese experiments must be significant to shed any light on

The plot is for one of the nine data sets. These moments can
be described by a power function over the whole time scale

range considered. Therefore, we can determine the intermit- ORNL 2000-1010 EFG

tency coefficient and generalized dimension for the nine data 108

sets. In Fig. 12, we have plotted the intermittency coefficient F-e..

C,(1) as a function of the radial position. The radial- ° Foo . 1

averaged level of intermittency i§,.(1)=0.17+0.03. This S 105k ' q=8 4

value is comparable to the values obtained for the density & e

fluctuations in W7-AS. The calculated generalized dimen- s S >, - 3

sion has been fitted using the binomial motfeThe aver- S o4k Tl 87 6 e

aged value op, obtained from those fits is 0.780.04. This g T - N

value is also close to the ones obtained in the W7-AS analy- GE) 1 q=4 e -~ 1

sis (see Table)l S o — s
= 10 —— _ 1

.\.\‘\ -]
V. SCALING WITH POLOIDAL LENGTH SCALES OF ] q=2
PLASMA EDGE FLUCTUATIONS 109 e —
We can only investigate the poloidal length scales for ! T 10

the case of W7-AS measurements, because it is the only

available eXpe”mental data from a multlpln probe measureI-:IG. 13. Several moments of measure for the floating potential measure-

ment-_ To these data, we have applied the analysis teChniqlrlﬁent as a function of poloidal separation for the discharge 35427 in W7-
described in Sec. lll. We have used the measurement of thes.
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ORNL 2000-1011EFG TABLE II. Intermittency paramete€(1) associated with temporal scales
0.25 rrrrrrrrrr B ERN ' A e * and poloidal scale lengths from the analysis of two discharges in W7-AS
i and for the three measures used in this paper.
0.20 ¢ ] 35427 35432
- Measure Temporal Poloidal Temporal Poloidal

. 015¢ 72 019003 022001 0.16:0.03 0.170.03
Z [ ] P2 0.14+0.03 0.1720.02 0.13-0.02 0.16-0.02
O 0.10L h V2 0.13+0.03 0.2%0.01 0.13:0.02 0.28:0.02

0.05 [ 1

C, derived here is probably related to the fluctuation range of
scale lengths.

0.35

0.30 s

0.25 £ VI. CONCLUSIONS

The results of the analysis of the plasma edge fluctua-
tions in both the W7-AS stellarator and in the TJ-I tokamak
show that in the fluctuation range of scales the turbulence
has a multifractal structure. This implies that plasma edge

0.20 L

Cq(1)

0.15 I

T
1

0.10 turbulence is intermittent at short time and space scales.
s ] However, in the mesoscale range, the structure of plasma
005} (b) E edge turbulence is monofractal.
T T The intermittency and the multifractality levels have
0_2 -1 0 1 5 been determined using three measures which are directly re-

lated to the fluctuations measured. The intermittency is char-
acterized by the intermittency coefficie@{1). Thelevel of

FIG. 14. Intermittency coefficier€,(1) as a function of the radial distance multifractality can be characterized by the value of the pa-
to the zero phase velocity point in the shear layer for the three measurg@meterp, obtained from a fit to the generalized dimension.
defined by Eqs(3)—(5) and for discharges(a 35427 and(b) 35432 in For all cases considered, the level of multifractality
WT-AS. seems to be the same within the error bars. There is hardly
any change in the parametey with the measure and for the
discharges considered. This indicates that the results of the

. L _ analysis are fairly robust.
this issue. Here we assume that the power scaling is the right The intermittency parameter may change with the edge

description of the data and we use such fits to determine thgiasma conditions, but for all the cases, the floating potential
scaling exponent. . _ fluctuations show a lower level of intermittency than the den-
In Fig. 14, we have plotted the intermittency parametergiy, and velocity fluctuations. We have not found much dif-
C,, derived from the poloidal length scaling fbg, V;, and  ference between the scaling exponents for temporal scales
®;. These plots are analogous to the ones showing the irand poloidal scale length, although the level of spatial inter-
termittency parameter for the temporal scalEgy. 7). The  mittency is in general higher than the temporal one. This
intermittency coefficient has been plotted as functions of theesult contrasts with the differences found for the Hurst ex-
radial position. The radially averaged value of b&h(1) ponent. The analysis of the structure function indicated that
andC (1) for each of the three measures and for the flucthe velocity fluctuations havid > 0.5 for temporal scales and
tuation range of time scales is given in Table Il. The H<0.5 for poloidal length scales.
indicates the standard deviation of the values of these coef- The levels of intermittency and multifractality that we
ficients for the 40 radial positions considered. We can sefound for the plasma edge turbulence measurements are
thatC,(1) is somewhat larger tha@(1). Also the level of comparable to the levels that have been found for neutral
intermittency for the floating potential is smaller than thefluid turbulence, with values fo€(1) andp; slightly higher
corresponding intermittency for the other fluctuation mea<for plasma turbulence.
surements. This effect has already been noticed in other It would be interesting to extend the present analysis to a
studies® In Table Il, we compareC,(1) with C_(1) for the  broader set of measurements and in particular to plasma core
fluctuation range. The reason is that the poloidal scaldluctuations. To find whether the values for the main param-
lengths considered are of the order and smaller than the peters used in this analysis have a more universal validity
loidal correlation length, which is 2#0.01cm for the could be important in providing a better understanding of the
W7-AS fluctuation measurements. Therefore, the value fostructure of plasma turbulence.

r—rg (cm)
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