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Plasma edge fluctuations show a degree of intermittency similar to fluid turbulence. Using
fluctuation measurements obtained with Langmuir probe data from two confinement devices, it is
shown that plasma fluctuations have a multifractal character over the fluctuation range of scales with
intermittency levels comparable to the levels measured in neutral fluid turbulence. In the mesoscale
range, that is, for time scales between 10 times the turbulence decorrelation time and plasma
confinement time, plasma fluctuations have a structure closer to a monofractal with very low
intermittency. © 2000 American Institute of Physics.@S1070-664X~00!00308-6#
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I. INTRODUCTION

Plasma edge fluctuations and induced fluxes measure
several types of confinement devices are self-similar over
mesoscale range of time scales,1,2 that is, for time scales
between 10 times the turbulence decorrelation time
plasma confinement time. The self-similarity parameter v
ies little from one device to another. At shorter scales, in
fluctuation range, there is not an exact self-similarity of flu
tuations and fluxes and the degree of self-similarity break
is not clearly defined. On the other hand, there is some
dence of intermittency in the fluctuations.3 This experimental
evidence suggests a different scaling of the plasma turbu
fluctuations in different time scale ranges and the possib
of more complicated structures than a single fractal struct

On the basis of a very simple hypothesis, Kolmogor
deduced the self-similarity of the turbulent velocity fluctu
tions and the definition of the inertial range.4 Later on, ex-
periments on neutral fluid turbulence have shown the bre
down of self-similarity for moments of the velocity structu
function larger than 3. Multifractal analysis has been a po
erful tool in understanding those deviations from se
similarity.5,6 This evolution in the understanding of fluid tu
bulence has also led to the development of simple phys
models that bring a level of understanding into this comp
cated field; from the simple eddy mitosis model based on
3271070-664X/2000/7(8)/3278/10/$17.00
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Kolmogorov self-similarity to theb,7 random b,8 and
binomial9 models that introduce the fractal and multifract
concepts.

In understanding plasma turbulence, we often resor
analogy with neutral fluid turbulence as a paradigm to wo
under. This can be very beneficial for visualizing the turb
lence and turbulent transport but if wrong could be ve
misleading. While we know there are some similarities b
tween fluid and plasma turbulence, for example, the natur
the nonlinear transfer of energy in certain nonlinearities,
also know there are some differences. For example, pla
turbulence has more nonlinearities and more distributed d
ing and dissipation ranges. Hence, it probably has a v
limited or nonexistent inertial range. Therefore, we do n
really know if overall this paradigm is valid. To aid valida
tion ~or discounting! the neutral fluid picture comparisons o
the dynamics must be made at as many levels as possible
do this one needs a variety of measures of those dynam

While it is interesting to pursue the investigation of th
similarity structures in plasma turbulence in the hope
gaining some understanding of the basic mechanisms un
lying the plasma turbulence, in using the multifractal ana
sis, we may also hope to clarify comparisons betwe
plasma and fluid turbulence. Because in plasma turbule
there is more than one type of nonlinearities with differe
spectral cascade directions as well as theE3B nonlinearity,
8 © 2000 American Institute of Physics
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which has a nonlocal character ink-space, it is not clear tha
we can attain such goal.

In designing the analysis tools used in the present stu
we have followed the Menevau and Sreenivasan10 analysis of
fluid turbulence. We have also followed some of the meth
suggested by Daviset al.,11 who developed the multifracta
formalism for more general applications. A first question
resolve in starting the present analysis is what is the rele
measure that we should apply to the plasma fluctuation m
surements. The obvious answer lies in the physics that
want to consider. In three-dimensional fluid turbulence,
intermittence is a characteristic property related to the ene
dissipation scales. The studies of intermittency are norm
focused on the energy dissipation rate, which is defined

e5
n

2 S ]ui

]xj
1

]uj

]xi
D 2

. ~1!

Here,ui is the i component of the fluctuating velocity andn
is the viscosity. Regretfully, there are no direct measu
ments of energy dissipation rates. To make a reasonable
timate of them, two assumptions are usually made. The
assumption is that the derivative of the velocity parallel
the flow motion has the same information as the full tens
The second assumption is Taylor’s frozen-flow hypothe
which allows us to take a time derivative instead of a sp
derivative parallel to the flow. Based on these assumptio
Menevau and Sreenivasan10 take as a measure

e'S du1

dt D 2

. ~2!

From the measurement of one component of the velocite
can be estimated through Eq.~2!.

In plasma turbulence, we do not have a starting po
like the Kolmogorov invariance properties. We can on
make some tentative assumptions about what could be a
sonable measure. For instance, we can consider some
sure of the energy such as the density fluctuation square
the radial velocity squared. We can also consider some q
dratic form analogous to Eq.~2! and take the square of th
time derivative of the fluctuations. In this analysis, we ha
tested several measures and we will compare them in w
follows.

Another issue in defining those measures is that we c
not use an equivalent assumption to Taylor’s frozen-fl
hypothesis. For instance, in a wind tunnel, turbulence is g
erated at the grid position and the flow carries the turbule
across the measuring point. Therefore, measurements t
at different times at a fixed point are equivalent to measu
ments at different points along the flow. This is not the ca
of plasma turbulence. In this case, there is generation
damping of turbulence at the same position where meas
ments are taken. Therefore, it is not possible to clearly se
rate between poloidal and temporal structures of the tur
lence with a single-point measure. Here, we consider b
single-point and multipoint measurements to try to sort
between these two types of scales.

For the moment, we can ask whether the measures
posed reflect any intermittency of the plasma turbule
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fluctuations. The simplest way to find out is by direct vis
alization. In Fig. 1, we have plotted the floating potent
fluctuations as a function of time. This measurement
been done at the plasma edge of the Wendelstein7 Adva
Stellarator ~W7-AS!.12 In Sec. III, we discuss the detail
about these fluctuation measurements. Here, we take the
saturation current fluctuations as equivalent to density fl
tuations and use the floating potential measurements in
poloidal positions to evaluate the fluctuating radial veloci
A simple visual inspection of the signal in Fig. 1 indicat
some degree of intermittency. However, when we plot,
the same data, two of the measures discussed previously
intermittency of the signal is rather more apparent. We h
plotted (ñ2^ñ&)2/^(ñ2^ñ&)2& in Fig. 2~a! and (Ṽr

2^Ṽr&)
2/^(Ṽr2^Ṽr&)

2& in Fig. 2~b! for the same plasma dis
charge and time as shown in Fig. 1. The angular brack
^ &, indicate time average over the whole time record. Th
plots in Fig. 2 are quite similar to plots of the normalize
energy dissipation rate in fluid turbulence.10 Therefore, both
measures may provide a reasonable description of the in
mittence properties of the plasma edge fluctuations. Furt
more, they are an indication that, in plasma edge turbulen
intermittency may be as relevant to the dynamics as it is
fluid turbulence.

The rest of the paper is organized as follows. In Sec.
we present the analysis methods for single and multipo
fluctuation measurements. The data to be analyzed are
scribed in Sec. III. In Secs. IV and V, we discuss the resu
of the analysis for the temporal scales. The results for po
dal length scales are described in Sec. VI. Finally, we pres
our conclusions in Sec. VII.

II. SCALING OF SINGULAR MEASURES

In the study of plasma edge turbulence, we have b
cally two types of fluctuation measurements, the ion satu
tion current and the floating potential. We will assume th
the fluctuation component of the first one is equivalent
plasma density fluctuations and the corresponding fluctua
component of the latter is equivalent to the plasma poten
fluctuations. From the latter, when we have more than

FIG. 1. Density fluctuations inside the shear flow layer for the discha
number 35 427 in the W7-AS stellarator.
e or copyright; see http://pop.aip.org/about/rights_and_permissions
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point measurement, we can derive the velocity fluctuatio
Having this information, we can construct the followin
measures:

en[~ ñ2^ñ&!2/^~ ñ2^ñ&!2&, ~3!

eF[~F̃2^F̃&!2/^~F̃2^F̃&!2&, ~4!

eV[~Ṽ2^Ṽ&!2/^~Ṽ2^Ṽ&!2&. ~5!

We also consider the corresponding measures for the
derivatives of the fluctuations. For instance, in the case of
density fluctuations, we define

edn5@~dñ/dt!2^~dñ/dt!&#2/^@~dñ/dt!2^~dñ/dt!&#2&. ~6!

In order to explore the multifractal character of th
plasma edge fluctuations, let us now consider the scalin
the previously discussed measures over different scale
this paper, we investigate separately the scaling over t
scales and over poloidal scale lengths. For this reason
first formulate the analysis for the scaling over times, b
cause this formalism is simpler since it corresponds t
single point measurement. In formulating the analysis
proach, we use as an example the case of the density sq
measure. Similar definitions carry over for other measure

FIG. 2. ~a! Square of the density fluctuations normalized to its mean va
for the same data set as in Fig. 1.~b! Square of the radial velocity fluctua
tions normalized to its mean value for the same data set as in Fig. 1.
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Given a time series of density fluctuations$ni ;
i 51,2,...,N%, we calculate the measure

e~1,i !5
~ni2^ni&!2

^~ni2^ni&!2&
, i 51,2,...,N, ~7!

where

^~ni2^ni&!2&5
1

N (
i 51

N

~ni2^ni&!2. ~8!

The next step is to calculate the measure over different t
scales. To do so, we averagee(1,i ) over subblocks of data o
a length~duration! T and we define

e~T,i !5
1

T (
j 50

T21

e~1,i 1 j !. ~9!

The averaging can be done over nonoverlapping blocks
blocks with some degree of overlap. When analyzing sim
multifractal structures created by computer modeling,
nonoverlapping blocks worked well. However, in practic
applications using experimental data, sometimes the res
are too noisy. We found that the results can be improved
allowing overlap between subblocks as a way of increas
the statistics. Using numerical data from multifractal mode
we have verified that both techniques produce the same
swer.

The next step is to calculate theq power of the measure
over the scaleT, e(T,i )q, and average over the indexi ~num-
ber of block considered! to obtain theq-moment̂ e(T,i )q&.10

The self-similarity~or self-affinity! of the fluctuations imply
that these moments scale as power of the time scaleT,

^e~T,i !q&'S T

ND 2Kt~q!

. ~10!

What we are looking for is the exponentKt(q). We use the
subindext to indicate that the scaling is over time scale
Note that for a pure self-similarity case~monofractal behav-
ior! Kt(q) scales asymptotically as a linear function ofq.
The multifractality is reflected in the nontrivial dependen
of Kt on q. Note thatq does not need to be an integer or ev
a positive number. Knowing theKt exponent, we can define

Ct~q!5
Kt~q!

q21
~11!

and the so-called generalized dimension13

Dt~q!512Ct~q!. ~12!

The parameterCt(1), which is calculated asCt(1)
5dKt(q)/dquq51 to remove the singularity, is called the in
termittency parameter. This parameter varies between 0 f
monofractal structure and 1.

The generalized dimension is known under differe
names for particular values ofq. For instance,Dt(0) is the
fractal dimension for support of the measure,Dt(1) is the
information dimension, andDt(2) is the correlation dimen-
sion. Again, for a monofractal, all of them have the sam
value. The variation ofDt with q gives an indication of what

e

e or copyright; see http://pop.aip.org/about/rights_and_permissions
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the degree of multifractality of the system is. Therefo
these functions ofq characterize the multifractal nature o
the measure.

To test the analysis code used for the evaluation of
generalized dimension, we have used multifractal models
which the generalized dimensions can be analytically ca
lated. We use the Mandelbrot approach6 for a simple genera-
tor that is recursively iterated. The simplest generator w
structure has three segments~up-down-up!. The analytic re-
sults are well reproduced by the analysis.

Let us now turn to the determination of the scaling ov
the poloidal scale length. We use data from multipin pro
measurements that will be described in Sec. III and we h
generalized the previous analysis technique for the mu
point measurements. This probe measures simultaneousl
ion saturation current fluctuation,Ĩ s , and the floating poten
tial, F̃ f , in 2M points which are poloidally separated by
fixed length. From each of these measurements, we havM
data sequences,F j[$ f i( j ); i 51,2,...,N% with j 51,...,M .
Here,f is either Ĩ s ,F̃ f , or some other derived quantity. Th
index j gives the poloidal position and the indexi is the
index of the time sequence. We can now construct a mea
generalizing Eq.~3!,

e~1,i , j !5
@ f i~ j !2^ f i~ j !&#2

^@ f i~ j !2^ f i~ j !&#2&
, i 51,...,N, j 51,...,M .

~13!

Here, the angular brackets,^ &, indicate averaging over po
loidal positionsj and timesi. We can now evaluate the mea
suree(L,i , j ) over poloidal separations of lengthL,

e~L,i , j !5
1

L (
k50

L21

«~1,i , j 1k! ~14!

for each poloidal positionj and each timei. Then we calcu-
late the corresponding moments of these measu
^ue(L,i , j )uq& and perform an average over the indicesi andj
for fixed L. Again we are looking for the scaling of thes
moments withL. If they scale as a power,

^e~L,i , j !q&'S L

M D 2Kl ~q!

, ~15!

we can determine the exponentKl(q) and the associate
intermittency coefficients,Cl(q), and generalized dimen
sion, Dl(q), using relations analogous to Eqs.~7! and ~8!.
We use here the subindexl to indicate that the scaling is ove
poloidal scale lengths.

For negative values ofq, the moments of the measur
are dominated by the smallest events. Of course a ser
problem appears if one term in the sum is zero. In this ca
the negative moments diverge, as can be seen from Eq.~13!.
This is a serious problem for the moments of the struct
function. It is somewhat unlikely for the moments of th
measure to be identically zero because they result from
average over scales. In spite of that, in some situations, t
can be very small contributions. Additionally, if the me
surements are not a continuous function of time~length!, the
q,0 moments reflect the time resolution and the discret
tion of the measurement. This behavior may cause a mi
oaded 29 Aug 2011 to 137.229.53.151. Redistribution subject to AIP licens
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terpretation of the results. The problem is linked to the nu
ber of significant digits in the measurement. This numbe
limited by the gain used in the measurement and/or digit
zation of the data. This has an important impact on the ne
tive moments of the measure. A fair indication of this pro
lem can be obtained by looking at the moments as a func
of T. We have used some numerical data from simple tur
lence models~50 000 data points! to test the effect of reduc
ing the number of digits characterizing the elements in a d
set. Two tests have been done by multiplying each elem
in the sequence by 106 ~and 105 in the second test! making it
an integer and dividing it afterward by 106. In this way we
are limiting the number of digits representing each eleme
The original data had nine digits. In Fig. 3~a!, we have plot-
ted theq524 moment of measure for the three cases. D
spite the fact that there are no identical cancellations for
of the calculated moments, one can easily see the str
effect that cutting the digits has on the slope of the mome
However, there is no discernible effect for positive values
q @Fig. 3~b!#. The extreme sensitivity of the negative m
ments makes it very difficult to imagine that they can
properly evaluated in the case of experimental data.
therefore emphasize the positiveq moments.

To determine the exponents that characterize the m
fractal structures, the moments of measure must behave
power for a reasonable range of values ofT andL. We take

FIG. 3. ~a! Theq524 moments of the square of the time derivative of t
density fluctuations for a numerical data set with different numbers of di
resolution.~b! Theq54 moments of the square of the time derivative of t
density fluctuations for the same numerical data set with different num
of digits resolution.
e or copyright; see http://pop.aip.org/about/rights_and_permissions
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a range that covers at least a decade to be a ‘‘reasona
range of values ofT andL. We will discuss in each case th
range of scales used in the analysis.

III. DATA ANALYZED

We have applied this analysis to plasma edge fluctua
data from the Wendelstein 7 Advanced stellarator~W7-AS!12

and the TJ-I tokamak.14 In both cases, the data were obtain
with Langmuir probe measurements.

In the case of the W7-AS stellarator, we use data from
reciprocating multipin Langmuir probe.15,16 This probe has
16 pins distributed in the poloidal direction; 8 of them a
used to measure the ion saturation current fluctuations,Ĩ s ,
and the other 8 to measure the floating potential fluctuatio
F̃ f . Details of the experimental setup can be found in R
15. The separation between the closest pins measuring
same type of fluctuations is 0.4 cm, except for the two l
pins, which are separated 0.8 cm. Therefore, with this pr
we can study poloidal scale lengths varying between 0.4
3.6 cm. This range is close to a decade of variation for
poloidal scale length. Because the probe is a reciproca
probe, it moves from the scrape-off layer to inside t
plasma, covering a distance of about 6 cm in each discha
The sampling rate is 0.5 MHz and each pin takes 800
data points in time. We have analyzed the data sets co
sponding to discharges 35 427, 35 432, 35 484, and 35
These discharges have been selected because the me
ment includes a sizable range~2 cm! of the edge plasma
region. For most of the analysis, we break those sets into
subsets of 20 000 points. For each of the data sets con
ered, the probe has only moved about 1.5 mm. Theref
they can be considered nearly stationary. In this way, we
do a radially dependent analysis of the similarity propert
of the fluctuations over both temporal and poloidal sca
We normalized the ion saturation current fluctuation to
time-averaged value in each subject to avoid effects cau
by changes in the size of the pins.

For these discharges, the decorrelation time of the fl
tuations is about 10ms. The time interval considered for eac
one of the 40 subsets is 1ms<T<10 ms. Therefore, we ca
study both the fluctuation range (T<10ms) and the mesos
cale range (T>100ms) of time scales.

The analysis techniques described in Sec. II are app
to the ion saturation current fluctuations,Ĩ s , which we iden-
tify with the density fluctuations, to the floating potenti
fluctuations,F̃ f , and to the poloidal electric field fluctua
tions, which we define asẼu5]F f /]u. The latter is ob-
tained from the measured potential by taking differences
tween measurements done at the closest poloidal posi
and neglecting the electron temperature fluctuations.
fluctuating poloidal electric field can also be interpreted a
measure of the fluctuating radial velocity,Ṽr52Ẽu /B.

We have also analyzed a radial scan using a fixed pr
through a sequence of nine discharges in the TJ-I tokama14

This sequence goes from discharge number 49 825 to
charge number 49 833. The data have a sampling rate o
MHz and collect a time sequence of 4000 points. They co
oaded 29 Aug 2011 to 137.229.53.151. Redistribution subject to AIP licens
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the radial range 0.91,r /as,1.08. The radial position of the
edge plasma shear layer isas . In TJ-I as'10 cm, therefore,
the radial range considered is less than 2 cm. Because o
short record length, for this data we can only study the fl
tuation range of scales. This range is from 1 to about 100ms.

IV. SCALING WITH TEMPORAL SCALES OF PLASMA
EDGE FLUCTUATIONS

In this section, we first consider the results of the ana
sis taking single-pin measurements in W7-AS. We use
data to find the scaling properties of the fluctuations o
different time scale ranges. The first question to resolve
the range of scales over which the moments of the mea
scale as a power. At short scales it is easier to define su
range. For large values ofT, the moments of measure tend
saturate at constant value. This is a general result for
measures considered. In the first study of the scaling ran
we used a record length of 150 000 points. We subtracte
trend in the data caused by the motion of the reciproca
probe. The reason for taking this large sample is to cove
many decades of temporal scales as possible. We have
culated the moments of measure^e(T,i )q&1/q for the differ-
ent measures defined in Sec. II. In plotting the data, we h
taken the 1/q power to make it easy to fit them into the sam
plot. As an illustration of the problems encountered, in F
4, we have plotted theq52 moments for then2 and the
(dn/dt)2 measures. In the latter case, we can see a rea
able range ofT values for which^e(T,i )q&1/q is a power
function, 1,T,200. A power-scaling range is more diffi
cult to find for then2 measure. Therefore, we see that t
(dn/dt)2 measure may be more adequate than then2 mea-
sure to quantify the multifractal properties of plasma fluctu
tions. We can see also in Fig. 4 that forT.103, that is for
time scales longer than 1 ms, there is a saturation of m
ments. The same considerations apply to the other mea
such asF2 andVr

2, the derivative square has a clearer pow
dependence range. However, the discrepancy is more sig
cant for the density square measure. It may be that in

FIG. 4. Theq54 moments of then2 and (dn/dt)2 measures for the data se
from discharge 35 427 in W7-AS.
e or copyright; see http://pop.aip.org/about/rights_and_permissions
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SOL, plasma density is low and the density square does
represent the energy transfer for the fluctuations.

In Fig. 5, we have plotted the 1/q power of the 1.q
.10 moments of the (dn/dt)2 measure in the power scalin
range. For a monofractal structure, all curves should colla
into a single one. Clearly, there is no collapse of the m
ments into a single curve. Therefore,Kt(q) is a nontrivial
function of q and the data analyzed has a multifractal ch
acter. The same result is obtained for all the other measu

We can repeat the calculation of the moments for
mesoscale range. In this range, the moments of measur
nearly independent ofT ~Fig. 6!. Therefore, if we assume
that the moments of measure scale as a power in this
scale range, the exponent is practically zero. Since all
ments collapse into a single curve, the measure reflec
monofractal structure in this range of scales. Again, the sa
results are found for all the other measures considered h

Let us now turn to the determination of the scaling e
ponents. To do a quantitative determination and avoid
problem with the motion of the probe, we have repeated

FIG. 5. 1/q power of the moments of the (dn/dt)2 measure in the fluctua-
tion range of time scales for the same data as in Fig. 5 showing a w
spread of values for the slope.

FIG. 6. 1/q power of the moments of the (dn/dt)2 measure in the mesoscal
range of time scales for the same data as in Fig. 5.
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analysis by breaking the full data sets into 40 data subse
20 000 points. We focus the analysis on the fluctuation a
mesoscale ranges separately and we study the radial de
dence of the main scaling exponents.

We first consider the fluctuation range. For this ran
and in Fig. 7, we have plotted the intermittency parame
Ct(1) for the three measures as a function of the radial d
tance to the zero phase velocity point in the shear layer.
plot is for data from two different discharges. In both di
charges, the three measures give very similar values for
intermittency parameter and this value is close to the
obtained in the analysis of fluid turbulence. This paramete
0 for a monofractal structure and its possible maximum va
is 1. It is difficult to make an accurate determination of t
errors involved in the calculation ofCt(1). In Fig. 7 we
have only included the statistical errors from fitting the m
ments of measure with a power function.

Using the time derivative measures, one obtains com
rable levels for the intermittency~Fig. 8!. These results show
that the calculated value for the intermittency is relative
robust.

From this analysis we can evaluate the generalized
mension for the plasma edge turbulence. The calculated

e

FIG. 7. Intermittency parameterCt(1) as a function of the radial distance t
the zero phase velocity point in the shear layer for the three measure
fined by Eqs.~3!–~5! and for discharges:~a! 35 427 and~b! 35 432 in
W7-AS.
e or copyright; see http://pop.aip.org/about/rights_and_permissions
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ues for the generalized dimension can be compared to
using the binomial model.9 This model has been used
interpret cascades in fluid turbulence. The model is a ge
alization of the eddy mitosis model and it is characterized
a single parameterp1 . The model assumes that each ed
breaks into two pieces and that each piece receives a fra
0.25p1 or 0.25(12p1) of the flux of kinetic energy. There
fore, the parameterp1 varies between 0 and 1 and is a me
sure of the asymmetry in the cascade. Ifp150.5, we recover
the eddy mitosis model and the monofractality. The proc
continues iteratively, and at each step the distribution of
ergy between eddies is a binomial distribution. Therefore
is possible to calculate analytically the generalized dim
sion

D~q!5
ln@p1

q1~12p1!q#

~12q!ln~2!
. ~16!

FIG. 9. Generalized dimension as a function ofq together with a fit done
with the binomial model.

FIG. 8. Intermittency parameterCt(1) as a function of the radial distance t
the zero phase velocity point in the shear layer for the three time deriva
measures and for discharge 35 427 in W7-AS.
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We have used this expression to fit the calculated ge
alized dimension at each of the 40 radial positions. In g
eral, this model fits very well the generalized dimension c
culated from the fluctuation data. However, since we do
include negative values ofq, the fit is less constrained. An
example of the fit for one of the data subsets of discha
35 427 is given in Fig. 9. The values ofp1 obtained for the
three measures applied to this discharge are plotted in
10. Over the entire range considered, the value ofp1 is
somewhat larger than the values reported from fluid tur
lence. In that case, the values obtained are close top1

50.7.10 The mean values ofp1 obtained for the different
measures and for the two discharges considered here
given in Table I. The6 indicates the standard deviation o
the values ofp1 for the 40 radial positions considered. Th
error in the determination of each of thep1 values is, in
general, larger than the dispersion of values, but difficult
determine. The statistical error from fitting the data with E
~16! is on average 0.04, that is, of the same order as
radial dispersion. Within the 0.04 averaged dispersion,
values obtained are consistent. They also seem to be i
pendent of the measure chosen.

The mesoscale range scales correspond to time sc
longer than about ten times the decorrelation time of
turbulence, in this particular discharge we take times lon
than 0.1 ms. The self-similarity properties for this time sc
range have been discussed in Ref. 1. In this time scale ra

e
FIG. 10. Values ofp1 obtained by fitting the generalized dimension o
tained for the three measures applied to discharge 35 427 in W7-AS.

TABLE I. Parameterp1 determined from fitting the generalized dimensio
associated with temporal scales and poloidal scale lengths from two
charges in W7-AS and for the three measures used in this paper.

Measure

35 427 35 432

Temporal Poloidal Temporal Poloidal

ñ2 0.7760.04 0.8260.02 0.7760.04 0.7960.03

F̃2 0.7560.03 0.7360.05 0.7360.03 0.7260.05

Ṽr
2 0.7660.04 0.8160.03 0.7660.04 0.8860.03
e or copyright; see http://pop.aip.org/about/rights_and_permissions
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the moments of measure are practically independent oT
~Fig. 6! and as a consequence the intermittency coefficien
considerably smaller than in the fluctuation range. It is pr
tically zero at all radial positions. The change of the gen
alized dimension withq is also found to be very weak in thi
range. It is difficult to determine whether this variation is re
or the fluctuations just obey a monofractal behavior with
the error bars of the calculation. This result clearly contra
with the one obtained for the fluctuation scale range wh
the structure is clearly multifractal.

To test the generality of the previous results, we ha
also analyzed plasma edge fluctuation data from the
tokamak. As discussed before, the record length of the
data is short, 4000 points. Therefore, we can only study
fluctuation range of scales. This range is from 1 to about
ms. In Fig. 11, we have plotted the moments of measu
^e(T,i )q&. The measure used is the density square meas
The plot is for one of the nine data sets. These moments
be described by a power function over the whole time sc
range considered. Therefore, we can determine the inter
tency coefficient and generalized dimension for the nine d
sets. In Fig. 12, we have plotted the intermittency coeffici
Ct(1) as a function of the radial position. The radia
averaged level of intermittency isCt(1)50.1760.03. This
value is comparable to the values obtained for the den
fluctuations in W7-AS. The calculated generalized dime
sion has been fitted using the binomial model.10 The aver-
aged value ofp1 obtained from those fits is 0.7860.04. This
value is also close to the ones obtained in the W7-AS an
sis ~see Table I!.

V. SCALING WITH POLOIDAL LENGTH SCALES OF
PLASMA EDGE FLUCTUATIONS

We can only investigate the poloidal length scales
the case of W7-AS measurements, because it is the
available experimental data from a multipin probe measu
ment. To these data, we have applied the analysis techn
described in Sec. III. We have used the measurement o

FIG. 11. Moments of square derivative of the density measure for data t
at plasma edge for discharge 49 829 in the TJ-I tokamak.
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ion saturation current fluctuations,Ĩ s , the floating potential
fluctuations, F̃ f , and the radial velocity fluctuations,V̄r

52Ēu /B. The latter is evaluated as described in Sec.
Because of the probe structure, we have only eight len
scales over which to test the power scaling. In Fig. 13,
have plotted several moments of measure for the floa
potential measurement. In the same figure we also show
example of a power fit to these moments. The moments
measure are consistent with the power dependent fit, but
ther experiments covering a broader range of scales woul
desirable to prove such power scaling. However, those
periments will not be easy because they require eithe
larger poloidal probe or multiple probe measurements al
the poloidal direction. The increase of the poloidal extent
these experiments must be significant to shed any light

enFIG. 12. Intermittency coefficientCt(1) as a function of the radial distanc
to the zero phase velocity point in the shear layer for a sequence of
charges in the TJ-I tokamak.

FIG. 13. Several moments of measure for the floating potential meas
ment as a function of poloidal separation for the discharge 35 427 in W
AS.
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this issue. Here we assume that the power scaling is the
description of the data and we use such fits to determine
scaling exponent.

In Fig. 14, we have plotted the intermittency paramet
Cl , derived from the poloidal length scaling forĨ s , Ṽr , and
F̃ f . These plots are analogous to the ones showing the
termittency parameter for the temporal scales~Fig. 7!. The
intermittency coefficient has been plotted as functions of
radial position. The radially averaged value of bothCl(1)
and Ct(1) for each of the three measures and for the fl
tuation range of time scales is given in Table II. The6
indicates the standard deviation of the values of these c
ficients for the 40 radial positions considered. We can
that Cl(1) is somewhat larger thanCt(1). Also the level of
intermittency for the floating potential is smaller than t
corresponding intermittency for the other fluctuation me
surements. This effect has already been noticed in o
studies.3 In Table II, we compareCl(1) with Ct(1) for the
fluctuation range. The reason is that the poloidal sc
lengths considered are of the order and smaller than the
loidal correlation length, which is 2.160.01 cm for the
W7-AS fluctuation measurements. Therefore, the value

FIG. 14. Intermittency coefficientCl(1) as a function of the radial distanc
to the zero phase velocity point in the shear layer for the three meas
defined by Eqs.~3!–~5! and for discharges:~a! 35 427 and~b! 35 432 in
W7-AS.
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Cl derived here is probably related to the fluctuation range
scale lengths.

VI. CONCLUSIONS

The results of the analysis of the plasma edge fluct
tions in both the W7-AS stellarator and in the TJ-I tokam
show that in the fluctuation range of scales the turbule
has a multifractal structure. This implies that plasma ed
turbulence is intermittent at short time and space sca
However, in the mesoscale range, the structure of pla
edge turbulence is monofractal.

The intermittency and the multifractality levels hav
been determined using three measures which are directly
lated to the fluctuations measured. The intermittency is ch
acterized by the intermittency coefficientC(1). Thelevel of
multifractality can be characterized by the value of the p
rameterp1 obtained from a fit to the generalized dimensio

For all cases considered, the level of multifractal
seems to be the same within the error bars. There is ha
any change in the parameterp1 with the measure and for th
discharges considered. This indicates that the results of
analysis are fairly robust.

The intermittency parameter may change with the ed
plasma conditions, but for all the cases, the floating poten
fluctuations show a lower level of intermittency than the de
sity and velocity fluctuations. We have not found much d
ference between the scaling exponents for temporal sc
and poloidal scale length, although the level of spatial int
mittency is in general higher than the temporal one. T
result contrasts with the differences found for the Hurst
ponent. The analysis of the structure function indicated t
the velocity fluctuations haveH.0.5 for temporal scales an
H,0.5 for poloidal length scales.

The levels of intermittency and multifractality that w
found for the plasma edge turbulence measurements
comparable to the levels that have been found for neu
fluid turbulence, with values forC(1) andp1 slightly higher
for plasma turbulence.

It would be interesting to extend the present analysis t
broader set of measurements and in particular to plasma
fluctuations. To find whether the values for the main para
eters used in this analysis have a more universal vali
could be important in providing a better understanding of
structure of plasma turbulence.

es

TABLE II. Intermittency parameterC(1) associated with temporal scale
and poloidal scale lengths from the analysis of two discharges in W7
and for the three measures used in this paper.

Measure

35 427 35 432

Temporal Poloidal Temporal Poloidal

ñ2 0.1960.03 0.2260.01 0.1660.03 0.1760.03

F̃2 0.1460.03 0.1760.02 0.1060.02 0.1660.02

Ṽr
2 0.1360.03 0.2160.01 0.1360.02 0.2860.02
e or copyright; see http://pop.aip.org/about/rights_and_permissions
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