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From extensive simulation of simple local fluid models of long wavelength drift wave turbulence 
in tokamaks, it is found that conventional notions concerning directions of cascades, locality and 
isotropy of spectral transfer, frequencies of fluctuations, and stationarity of saturation do not 
hold for moderate to long wavelengths (kps< 1). In particular, at long wavelengths, where 
spectral transfer of energy is dominated by the EX B nonlinearity, energy is carried to short 
scale (even in two dimensions) in a manner that is anisotropic and highly nonlocal (energy is 
efficiently passed between modes separated by the entire spectrum range in a correlation time). 
At short wavelengths, transfer is dominated by the polarization drift nonlinearity. While the 
standard dual cascade applies in this subrange, it is found that finite spectrum size can produce 
cascades that are reverse directed (Le., energy to high k) and are nonconservative in enstrophy 
and energy similarity ranges (but conservative overall). In regions where both nonlinearities are 
important, cross-coupling between the nonlinearities gives rise to large nonlinear frequency 
shifts which profoundly affect the dynamics of saturation by modifying the growth rate and 
nonlinear transfer rates. These modifications produce a nonstationary saturated state with large 
amplitude, long period relaxation oscillations in the energy, spectrum shape, and transport rates. 
Methods of observing these effects are presented. 

I. INTRODUCTION 

The study of electrostatic plasma turbulence has 
greatly benefited from simple paradigms that exploit the 
direct relationship between the physics of collective EX B 
motion in plasmas and the turbulent flow of ordinary flu­
ids. This relationship has typically provided the basis for 
describing saturation of electrostatic instabilities in plas­
mas. Thus, in a process like that of the inertial cascade of 
Navier-Stokes turbulence, advective straining by EX B 
flow in plasma turbulence is assumed to produce a cascade 
whose transfer of energy to dissipative scales balances the 
energy injected by a collective instability. The relationship 
between EX B flow and neutral fluid motion has also 
meant that spectral transfer has generally been assumed to 
be local (in wave-number space) and isotropic. Transfer in 
drift wave turbulence in the shorter wavelength part of the 
spectrum has also been assumed to follow a neutral fluid 
analogy, namely, two-dimensional (2-D) Navier-Stokes 
turbulence. For both types of turbulence, a dual cascade is 
invoked, with energy conservatively cascading to long 
wavelengths and enstrophy to short wavelengths. Another 
feature of Navier-Stokes turbulence has also provided a 
useful analog: the fact that the Kolmogorov spectrum is an 
energy transfer rate balance under stationary random stir-
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ring, thus guaranteeing the stationarity of the saturated 
state established by self-similar transfer to the dissipation 
range. By analogy, the driving of collective instabilities in 
plasmas from fixed gradients maintained by transport bal­
ances on the transport time scale has likewise been con­
struced to lead to stationary saturation. 

This paper describes recent studies of the long wave­
length drift wave turbulence associated with trapped par­
ticle motion in tokamaks that have found that spectral 
transfer by EX B advection produces a variety of effects 
outside the classical phenomenology of cascades in ordi­
nary fluids. 1-5 These effects include the nonlocality of spec­
tral transfer, anisotropy of transfer, even under isotropic 
driving and damping, nonconservative cascades by the con­
servative EX B advection in spectrum subranges, and the 
nonstationarity of saturated turbulence. In most cases, 
these effects ultimately originate from the specific way in 
which plasma scalar fields, especially the density, are cou­
pled to the flow through the electrostatic potential. In 
other cases, the presence and nature of sources and sinks, 
arising from collective instability and dissipation, modify 
the classical description of cascades, even under transfer 
processes that are isomorphic to the advective straining of 
Navier-Stokes turbulence. 

These studies examine the spectral transfer and satu­
ration of long wavelength electrostatic fluctuations in tok­
amaks using a series of simple fluid models with diagnos­
tics designed for investigating the nonlinear dynamics. 
Four models have been studied in a progression from sim­
ple to more complex descriptions. These models consist of 
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( 1) the Hasegawa-Mirna equation,6 a one-field model of 
nondissipated drift wave turbulence governed by advective 
straining of vorticity, a process that dominates spectral 
transfer at small scales; (2) a one-field description of 
trapped particle fluctuations 1.7 spectrally scattered by 
EX B advection of the nonadiabatic electron density, a 
process that dominates at long wavelengths; (3) a one-field 
model incorporating both of the above processes,8 and 
therefore able to describe spectral transfer under the cross­
coupling of the two nonlinearities; and (4) a two-field 
model governed by the same nonlinear processes, but al­
lowing the nonadiabatic electron density and potential to 
evolve separately. Permitting separate evolution of non ad i­
abatic density and potential breaks the artificial constraint 
that the nonadiabatic density be equal to the potential 
times a constant multiplier [1i/no= (1 +io)e¢/Te]' This 
constraint is frequently imposed to achieve a simple one­
field description, as in models (1)-( 3). In model (4) it is 
possible for a frequency shift induced by the cross-coupling 
of the two nonlinearities to affect the stability and dynam­
ics of saturation. Numerical solutions of these models are 
obtained by spectral techniques, and studied using diagnos­
tics that stress the transfer dynamics and include time his­
tories of total energy and enstrophy, individual mode am­
plitudes, and power spectra. Particular use is made of a 
diagnostic that measures spectral transfer rates (as a func­
tion of mode number) of energy and enstrophy. With these 
tools it is possible to investigate the detailed dynamics of 
the mode evolution and spectral transfer. 

II. MODEL PROPERTIES AND BASIC SPECTRAL 
TRANSFER CHARACTERISTICS 

In this section the complete two-field model is briefly 
presented and some of its main properties are discussed. 
This is done in the context of comparing and contrasting 
this model with the one-field reductions of the same sys­
tem. This analysis examines the linear structure, the inte­
gral invariants associated with the two nonlinearities, and 
the spectral transfer properties of each nonlinearity. 

The model utilized for this study is a set of trapped 
particle fluid equations that couples the dynamics of colli­
sional trapped electrons with hydrodynamic ions through 
the quasineutrality condition. In previous work based on 
one-field reductions,I.3.4 the inertial response of the elec­
trons was neglected by considering only the most dissipa­
tive extreme of collisionality. Here, the electron nonlinear­
ity and inertia terms are included, yielding the model 
equations: 

r: 2 2 a¢ a¢ r: a¢ r:-
(l-'JE-PsV) at+VDay-'IEVD(I+a77e) ay-'IEVen 

+ (Eve¢ + PsCsV¢Xz' Vp;V2¢ +f.LV4¢ =0 (1) 

and 

an a¢ _ _ 
at + v D(1 +a77e) ay +vetrfl-CsPsV¢Xz. Vn-verrP=O, 

(2) 
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where n=ne+¢ is the fluctuating electron density plus the 
fluctuating potential, V D= (cT /eB) L;; 1 is the diamag­
netic drift velocity, E is the trapped electron fraction, 
77e=d In T /d In n is the electron temperature gradient pa­
rameter, vetf,e = V/E, f.L is the coefficient of the hyperviscos­
ity introduced to model strong damping at high k, Ln is the 
density gradient scale length, Ps= (eT /eB)/Cs is the ion 
gyroradius evaluated at the electron temperature, a=3/2, 
and Cs= (T /mi) 1/2 is the ion sound speed. The second 
field n is the total electron density ne+¢' Evolving this 
field instead of the nonadiabatic density ne simplifies the 
computation. The equation for the nonadiabatic density 
has a time derivative of ¢ in addition to the time derivative 
of ne , making the use of explicit solvers impossible. 
Advancing the total density also has conceptual advan­
tages: under this description, each field has a single non­
linearity. The EX B nonlinearity [v E' V n, where 
VE= - (e/ Bo)V¢Xz is the EX B drift] appears solely 
in the density equation, and the nonlinearity of the 
polarization drift [arising from noV'v~l), where 
v~\)=Bol(mf:/e)zXvE' VVE is the advective part of po­
larization drift] appears solely in the potential equation. 
These equations reflect the imposition of quasineutrality in 
order to eliminate the ion density. While the physics of 
EX B advection of both electron and ion densities is 
present in the original equations for electron and ion con­
tinuity, the imposition of quasineutrality means that the 
advection of nonadiabatic electron density governs the 
EX B nonlinearity. 

The linear dispersion relation for this system is given 
by 

(1- (E+k2p;)ai+ [iv( 1 +~p;) 

-w*( 1- (EfJ) ]w-iw*v=O, (3) 

where fJ=(1+a77e)' w*=v#y, and and SUbscripts have 
been dropped from vetf,e' While the exact solution of this 
quadratic dispersion relation is easily obtained, the prop­
erties of the linear instability are more transparent from an 
iterated solution for v).w-w*. To lowest order the eigen­
frequency is real with w=w*/(1 +kp2). The second­
order frequency is imaginary, yielding the growth rate, 
r= - (W/v)E1I2[W-W*f3] (1 +kp;) -I. For small k, the 
growth rate goes as k;, and drops off as k;2 for large k. In 
the one-field reduction, these expressions for the frequency 
and the growth rate appear as constant coefficients multi­
plying the field amplitUde. 

It is possible to determine the relative sizes of the 
EX B and polarization drift nonlinearities by iterating on 
Eq. (2) in order to express the factor n in the EX B non­
linearity in terms of ¢. For v>w, Eq. (2) yields 

VD a¢ 
n=¢-- (1 +a77e) -a v y 

to lowest order. Upon substitution of this expression into 
the EX B nonlinearity, CsPsV¢Xz· Vne 
--+Csps(v~v)(1+a77e)V¢Xz'V a¢/ay. Comparing the 
two nonlinearities, it is apparent that the polarization drift 
nonlinearity dominates the EX B nonlinearity at very short 
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wavelengths because it has an additional spatial derivative. 
At long wavelengths the EX B nonlinearity dominates. 
The nominal crossover point is given by the wave number 
at which the two nonlinearities are equal. This crossover 
point depends on the effective electron collisionality v. As­
suming rough isotropy, so that VI ;::::,alay, this wave num­
ber is given by kps;::::,{j=C/Lnv=koPs' The nonlinearities 
are characterized, not by a single spatial scale, but by a 
triad interaction consisting of three waves of differing 
wavelengths. Thus, it is more realistic to identify a region 
centered about the crossover wave number in which the 
two nonlinearities are comparable, rather than to speak of 
a single wave number at which the two are equal. It is 
within this region that the cross-coupling dynamics are 
crucial. 

With the iterated solution of Eq. (2) substituted into 
Eq. (1), the turbulent dynamics is described by a single 
equation with EX B and polarization drift nonlinearities. 
Oue to the presence of the EX B nonlinearity, a single 
quadratic invariant, the energy, is admitted by this system 
in the absence of driving and damping. From analysis of 
the statistical mechanics of interacting mode amplitudes in 
equilibrium, turbulent systems with a single invariant are 
expected to transfer energy to short wavelengths. 1,7 This 
holds provided the stationary spectrum (in a nonequilib­
rium dynamic state consisting of a cascade-mediated bal­
ance between sources and sinks) peaks at long wavelengths 
or is at worst flat. Transfer to long wavelengths drives 
enstrophy production, l a fact consistent with the breaking 
of enstrophy invariance by the EX B nonlinearity. The 
EX B nonlinearity is present even in spectral ranges where 
the polarization drift nonlinearity dominates (k '> ko). 
Thus, in a strict sense, enstrophy is not conserved even 
when the EX B nonlinearity is weak relative to the polar­
ization drift nonlinearity. However, in such a case, the 
EX B nonlinearity accounts for proportionately less of the 
total energy transfer. 3 Because enstrophy production is tied 
to energy transfer by the EX B nonlinearity, it can be ex­
pected that the importance of enstrophy production in the 
cascade dynamics diminishes for k> "0. Consequently, 
transfer in the high-k regime, i.e., transfer dominated by 
the polarization drift nonlinearity, is consistent with con­
servation of both energy and enstrophy. 

A. Short wavelength transfer: The Hasegawa-Mima 
equation 

The above arguments suggest that the enstrophy pro­
ducing Ex B nonlinearity may be discarded in describing 
transfer at sufficiently high k. Historically, a one-field sys­
tem with only the polarization drift nonlinearity, the 
Hasegawa-Mima equation, was derived by neglecting the 
nonadiabatic electron density. Without a nonadiabatic 
electron response, n=l/>, and the EX B nonlinearity and 
instability vanish. Equations (1) and (2) then reduce to 

Because Eq. (4) has two dynamical invariants, a dual cas­
cade is expected on the basis of equilibrium statistical me-
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chanics. Enstrophy has two more derivatives than energy 
and thus tends to concentrate in smaller scales. Accord­
ingly, enstrophy cascades to short wavelengths while the 
energy undergoes an inverse cascade to long wavelength. 
This process is identical to the dual cascade of2-D Navier­
Stokes turbulence because the polarization drift nonlinear­
ity is isomorphic to the se1f-advective nonlinearity of the 
2-0 Navier-Stokes equation. 

The accepted view of the dual cascade holds that from 
the scale at which energy and enstrophy are externally 
injected into the system, all of the enstrophy is carried in a 
self-similar, conservative cascade to short wavelength, and 
all of the energy is carried self-similarly to long wave­
length. In such a cascade there is no improper flow, i.e., no 
enstrophy is transferred to long wavelength, and no energy 
is transferred to short wavelength. The validity of this pic~ 
ture was established in a proof that assumed a spectrum of 
infinite extent and made no allowances for injection at a 
finite wave number.9 Measurements of fluctuations in the 
core of tokamaks indicate that the spectrum is of very 
limited extent, encompassing perhaps as little as a decade 
before dissipation cuts off the transfer. 10 Indeed, an inertial 
range may not even exist, given the distributed sources and 
sinks characteristic of collective instabilities in plasmas. 
However, because spectral transfer is conservative, even in 
the absence of an inertial range, it is instructive to examine 
inertial transfer, but in an inertial range that is of limited 
extent. 

The dual cascade of the Hasegawa-Mima equation has 
been studied numerically and analyticaIly2 for a spectrum 
bounded by wave numbers k min and k max into which energy 
and enstrophy are injected at intermediate wave number 
kinj . For a finite spectrum extent, it is necessary to account 
for the energy carried in the conservative ens trophy trans~ 
fer to short wavelength and the ens trophy carried in the 
conservative energy transfer to long wavelength. Because a 
conservative enstrophy cascade carries an invariant 
amount of enstrophy to smaller scale, the energy associated 
with those motions must diminish as gradients increase at 
smaller scale. Similarly, enstrophy carried in the conserva­
tive energy cascade must diminish as gradients become 
smaller at large scale. The nonconserving improper energy 
cascade that accompanies the usual conservative cascade of 
enstrophy from kinj to kmax can only be admitted in a con­
servative system if energy is generated somewhere else in 
the system in an amount equal to the amount lost in the 
forward enstrophy cascade. It is possible to recover the net 
invanance of energy and reduce to the standard dual cas­
cade picture in the limit of an infinite spectrum if a portion 
of the injected enstrophy cascades conservatively to long 
wavelength from kinj to kmin • The portion of conservatively 
cascaded enstrophy carried in the improper direction must 
be such that the energy generated is equal to the amount of 
energy lost in the proper enstrophy cascade. Likewise an 
improper energy cascade must occur in order to obtain a 
net invariance of enstrophy. 

From the relationship ftk=K-Ek between energy 
Ek and enstrophy ftk in a given scale k, and the constraint 
of net invariance, it is straightforward to show that 
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the amount of energy carried in the proper and reverse 
(improper) self-similar cascades is given by Ep= (l/2)E 
X CI-[2)/CI-R2) and Er= (l/2)E (I2-R2)/CI_R2), 
where [= kin/kmax , R = k min/ kmax , and E is the total en­
ergy injected at k inj . Likewise Op= (l/2)O(I2_R2)/ 
[2(l_R2) and Or=(1/2)O(l-[2)R2/[2(I-R2), where 
0= kfnjE is the total enstrophy injected. Examination of 
these relationships shows that the amount of energy and 
enstrophy in the reverse cascades goes to zero when the 
spectrum becomes infinite. For finite spectra of limited ex­
tent the deviation from the conventional dual cascade pic­
ture can be marked. For example, for k inj 1c 0.7 kmax , the 
amount of energy cascaded in the reverse direction toward 
kmax exceeds the amount of energy cascaded in the proper 
direction toward k min . 

B. Long wavelength transfer 

In the long wavelength regime (k<ko), the polariza­
tion drift nonlinearity is weak relative to the EX B nonlin­
earity. In such a case there is significant enstrophy produc­
tion on the nonlinear time scale, consistent with a direct 
cascade of energy from long wavelengths to shorter wave­
lengths (within k < ko). The long wavelength Kadomtsev­
Pogutse equation9 models this process: 

where D= EI/2vb( 1 +a77e)/V, This model has been studied 
in the context of dissipative trapped ion convective cell 
turbulence,I,7 but is also valid for dissipative trapped elec­
tron mode turbulence with modifications in the structure 
of the linear sources and sinks. The direct transfer of en­
ergy by the EX B nonlinearity to short wavelengths can be 
anticipated solely on the basis of the existence of a single 
quadratic invariant, a feature in common with three­
dimensional Navier-Stokes turbulence. However, the iso­
tropic, self-similar, local cascade (in wave-number space) 
conventionally invoked for Navier-Stokes turbulence and 
enshrined in the Kolmogorov spectrum does not provide 
an accurate picture of transfer by the EX B nonlinearity. 
Isotropy, locality, and self-similarity do not apply to the 
EX B nonlinearity. This is evident from the form of the 
nonlinearity itself. Isotropy is broken by the nonadiabatic 
electron response, leading to the factor an/ay in the non­
linearity. Nonlocality can also be anticipated from the 
symmetry of the three-wave coupling of the nonlinearity. 
The symmetrized Fourier transform of the EX B nonlin­
earity yields V(an/ay)XzoVn-+-il:(kXk'oz)[k; -(ky 
-k;)]. For highly nonlocal transfer from a long wave­
length mode k, ky .( k;, ky - k;. The coupling coefficient is 
proportional to (2k; - ky) ::::: 2k; and is thus large if the 
triad spans a large spectrum range in the ky direction. Note 
that for triads spanning a large spectrum range in the kx 
direction (but not in ky) there is no intrinsic favoring of 
nonlocal transfer over local transfer. By way of contrast, 
the polarization drift nonlinearity yields V n X z 0 VV2n 
-+l:(kXk' oz) [(k1 - kI )2 - k2] for nonlocal triads. 
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Here, factors proportional to k~2 cancel out, - 2kl kr typ­
ically vanishes by symmetry, and the remaining factor kI 
is small. 

The nonlocality and anisotropy of EX B transfer is 
strongly evident in the measurement of transfer rates ob­
served in numerical solutions of Eq. (5). Figures 1 and 2 
show local and nonlocal rates of energy transfer from and 
into bands of constant kx and ky • For convenience, nonlo­
cal is defined as energy transferred in a triad interaction 
linking wave numbers separated by at least half of the 
spectrum extent. Note that nonlocal transfer dominates 
local transfer for energy exchanged between bands of dif­
ferent ky, whereas local and nonlocal transfer rates are 
comparable between bands of different k x ' The existence of 
nonlocal transfer is not a mere curiosity. Nonlocal transfer 
flattens the wave-number spectrum,3 allowing shorter 
wavelength modes to play a significant role in transport. 
Moreover, the ability to move energy directly across the 
spectrum in a single correlation time reduces the nonlinear 
response time of the spectrum. 

III. CROSS-COUPLING OF NONLINEARITIES 

When the simple one-field models representing transfer 
in long and short wavelength extremes are combined, the 
resulting equation allows description of spectral transfer 
across the spectrum: 

ali a21i ali _ ali _ 
at +Dayz+ VD ay +v,n-LnDV ayXzoVn 

+ PsCsViiXz o V p;V21i+f.LV41i =0, 
(6) 

where Vi models collisional damping at long wavelength. 
First studied by Terry and Horton,S subsequent analysis of 
this equation revealed that the large nonlinear shifts ob­
served in the frequency spectrum II could be traced to the 
cross-coupling of the two nonlinearities,3 an effect wholly 
absent in either of the models reviewed in the previous 
subsections. The origin of this frequency shift is readily 
apparent in the simplest closures. 3,4 

A. Cross-coupling frequency shift 

When two quadratic nonlinearities govern spectral 
transfer, any member of a triad coupled by one of the 
nonlinearities may be driven by a three-wave coupling of 
the other nonlinearity. In terms of standard closures, this 
process is reflected in the iteration of the basic equation, 

• (ExB) 
Eq. (6), here rewntten as ank/at ~ l:k'Xkk' nk,nk-k' 

~ (Pol) h h l' '. d fi + "'k'Xk k' nk,nk-k', were t e mear terms are omltte or 
clarity,~ndXkj,B) = U/2)LnD(kXk'oz)(2k; - ky) and 
Xk~k~l) = (l/2)p;Cs(kXk' oz)[(k1 -kr )2-k2].Whenthe 
mode nk-k' is nonlinearly driven by fluctuations n_k' 
and nk' the direct beating with these fluctuations yields a 
closed expression for nk' The driven fluctuation nk-k' is 
coupled to n_k' and nk through both nonlinearities: 
a /a ( (EXB) (Pol» Th" 

nk_k' t ~ Xk-k',-k'Xk-k',-k' n_k,nk' e mversIOn 
f h· . . Id A -I (ExB) OtiS equatIOn Yle s nk-k' =~(J)k-k'(Xk_k.,_k' 

(Pol» h A -I • h h d 1 + Xk-k',-k' n_k,nb w ere ~(J)k_k' IS t e p ase ecorre a-
tion time. The closure obtained by substituting for nk_k' in 
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duce a nonlinear frequency that shifts the eigenfrequency, 
or peak of the frequency spectrum. Because the phase 
decorrelation time can, in general, be complex, the cross 
terms can also contribute directly to the nonlinear transfer 
rate. For simplicity, if t::..Wk~k' is treated as real, the fre­
quency shift is given by 

" (Ex B) (Pol) 
1m vk=2 £.. (Xkk' Xk-k' -k' 

k" , 

(Pol) (ExB) ) I 12A - I 
+Xk,k' Xk-k',-k' nk' uWk_ k, 

(7) 

The basic properties of this expression, specifically its am­
plitude dependence, its dependence on ky, and the fact that 
it requires both nonlinearities, have been verified from nu­
merical solutions of Eq. (6). 

The cross-coupling contribution to the fluctuation fre­
quency and nonlinear transfer rate significantly modifies 
spectral transfer in a region around the crossover wave 
number k=ko. In the immediate proximity of k=ko, the 
transfer is governed by an amalgam of EX B transfer, po­
larization drift transfer and cross-coupling. Moving from 
ko to higher k, (i EXB»2 quickly becomes subdominant to 
(X(Pol) )2. However, because the cross-coupling terms are a 
geometric mean of ~(EX B) and i Po1 ), they remain signifi­
cant even after (X Ex B) ) 2 is subdominant. In practice, 
there is a 1-2 decade span of wave numbers around ko in 
which the cross-coupling frequency shift and transfer rate 
playa significant role. Beyond this, spectral transfer is gov­
erned by either the EX B nonlinearity (for k«ko) or po­
larization drift nonlinearity (for k>ko) as if they existed in 
isolation. Because the crossover wave number ko typically 
falls within the decade of significant fluctuation power in 
experimental spectra in tokamaks, \0 cross-coupling effects 
cannot be ignored in drift wave models. 

B. Role of frequency shift on saturated turbulence 

In the saturated phase, instability-driven plasma tur­
bulence is usually described in terms of a simple balance 
between the energy injected by unstable modes and the 
turbulent spectral transfer to damped fluctuations. Nonlin­
ear frequency effects, such as the cross-coupling frequency 
shift, are generally ignored since they are oscillatory or 
reactive, not dissipative. In fact, they can have significant 
impact on the turbulence levels and transport associated 
with drift wave fluctuations, because both the growth rate 
and transport fluxes are proportional to the difference of 
the fluctuation frequency and the diamagnetic frequency. 
This difference is usually approximated by using the linear 
eigenfrequency to represent the fluctuation frequency. In 
reality, effects such as the cross-coupling frequency shift 
can strongly modify the linear eigenfrequency at finite am­
plitude and therefore, the growth rate or rate of energy 
injection into the turbulence. (It is worth noting that the 
frequency cannot exceed the diamagnetic frequency. To do 
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so, the EX B nonlinearity, which is itself proportional to 
w-wJ3, would have to pass through zero. However, when 
the EX B nonlinearity becomes zero, the frequency shift is 
also zero. 12) Because the feedback of finite-amplitude­
induced frequency shifts on the growth rate of unstable 
fluctuations requires a frequency-dependent relation be­
tween the density and the potential, fixed is models, or first 
order in time one-field models miss these effects. On the 
other hand, Eqs. (1) and (2) capture the feedback of the 
frequency shift on the instability process. 

Numerical solutions of Eqs. (1) and (2) indicate that 
the cross-coupling frequency shift not only modifies the 
fluctuation levels and amplitUde of transport fluxes, but 
alters the basic temporal behavior of the saturated state. 
Specifically, the conventional picture of the saturated state 
as a stationary balance of the phase-averaged spectral 
transfer and linear growth is no longer valid. Rather, large 
amplitude, long period oscillations of the total energy, the 
wave-number spectrum, and the particle flux are observed. 
The amplitUde of these oscillations ranges from 15%-
100% of the nominal fluctuation level and the period is of 
the order of 10 nonlinear interaction (eddy turnover) 
times. The oscillations are linked to cross-coupling effects 
because they are not present when the spectrum is ar­
ranged so that it lies entirely within either k>ko or k«ko. 
Moreover, the oscillations are strong when w < v but be­
come weak when w ~ v. When w ~ v, w replaces iv in the 
nonadiabatic electron response. This changes the complex 
phase of the Ex B nonlinearity by 1T/2 and therefore ro­
tates the frequency shift by 1T/2 in the complex plane, mak­
ing it a contribution to the nonlinear transfer, and no 
longer allowing it to modify the energy extraction rate. 
This latter observation is a clue that the amplitude cycles 
are related to the temporal response of the turbulent satu­
ration to a growth rate that is amplitUde dependent 
through the effect of the frequency shift.12 It is also ob­
served that variation of the relative strength of the nonlin­
ear transfer rate to the linear growth rate alters both the 
amplitude and period of the cycles, with the amplitUde 
varying inversely to the period. 

The basic cycling phenomenon is illustrated in Fig. 3, 
which shows the total energy and the energy of a single 
mode. The rapid fluctuations of the single mode energy 
indicate the basic nonlinear interaction time scale. This is 
modulated by a long period envelope corresponding to the 
cycling. The total energy sums over all modes and largely 
washes out fluctuations on the nonlinear interaction time 
scale. Consequently, the long period oscillation in the en­
ergy indicates a basic change in the saturation balance. 
From Figs. 4 and 5, this change is linked to the fluctuation 
frequency. Figure 4 shows frequency spectra of a mode in 
the midrange of the wave-number spectrum taken from an 
ensemble of time histories covering a fraction of a cycle 
and conditionally triggered near the points of maximum 
and minimum total energy, e.g., near t= 10 and 14 on Fig. 
5. The mean frequency (w) = f wS(w )dw corresponding to 
the energy maximum is clearly larger than the mean fre­
quency corresponding to the minimum energy. This is con­
sistent with the amplitUde dependence of the cross-
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FIG. 3. Total energy and mode energy of an unstable mode. During a cycling event the total energy is seen to fluctuate by more than 15%. The period 
is 5-10 "eddy turnover times" as defined by a mode fluctuation time. 

coupling frequency shift. Because a large frequency shift 
reduces the growth rate [yo: -«(i)-(i)J3) with (i)<(i)J3]. 
the amplitude collapse is consistent with the growth rate 
being reduced by the cross-coupling frequency shift. 

During a cycling event there is typically bursting in the 
particle flux. A burst of flux usually leads to the charac­
teristic collapse of energy in the dominant modes. These 
dominant modes generally lie in the spectrum midrange. 
near or slightly above the crossover wave number. and are 
just below the most linearly unstable modes. Near the min-

imum of a cycle, the phase relation between nand ifJ of the 
low k modes goes to O. This causes a cessation of transfer 
from the EX B nonlinearity, and makes the contribution to 
the particle flux from these modes become zero (both the 
flux and the EX B nonlinearity are maximum when the 
phase shift between nand ifJ is 1T /2, and zero when nand ifJ 
are in phase). Once the EX B nonlinearity is zero, the 
phase is rescrambled by the polarization drift nonlinearity 
on a nonlinear time scale and the flux and nonlinear trans­
fer resume. From the transfer diagnostic and the wave-

-e- Freq. spectrum at the peak of a cycle 
•• -e-•• Freq. spectrum near the trough of a cycle 

-40 ·30 -20 -10 0 10 20 30 40 
frequency (arb. units) 

FIG. 4. Frequency spectra from an ensemble of time histories at cycle maxima and minima. 
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FIG. 5. Energy and enstrophy during several cycles. 

number spectrum evolution, the spectrum evolution during 
a cycle may be described as follows: the most unstable 
modes increase in amplitude as the energy rises at the be­
ginning of a cycle. Subsequently, a large burst of energy is 
carried to low ky, with a smaller amount of energy carried 
to high ky . This causes the spectrum to flatten in the ky 
direction. As the amplitude collapses, there is a cascade to 
high kx attributable to the polarization drift nonlinearity. 
Simultaneously, the EX B nonlinearity drives strong trans­
fer to high k_ This takes most of the energy to the high-k 
dissipation region and brings the cycle full circle_ 

The cycles are also evident in the isodensity contour 
plots in real space. Structures that are elongated in the x 
direction appear, grow, and propagate in the y direction, 
followed by a rapid breakup and subsequent reemergence_ 
This is seen in Fig. 6. The eccentricity of these structures 
(their x/y dimension) is partially determined by where the 
crossover wave number ko is located relative to the wave 
number of the most unstable mode. If the most unstable 
modes are in the EX B nonlinearity dominated region then 
the structures are narrower in the y direction due to in­
creased direct, nonlocal transfer to high kyo 

A simple hypothesis for the cause of the cycles can be 
formulated as follows: at large amplitude, the cross­
coupling frequency shift reduces the growth rate, thereby 
causing the amplitude to fall until the nonlinear transfer 
has adjusted downward. At lower amplitudes, the fre­
quency shift is smaller and the growth rate becomes larger, 
forcing the amplitude to rise again. A steady state is im­
possible because memory effects in the nonlinear response 
provide the system with finite inertia. 

These results indicate that the cross-coupling of non­
linearities produces profound changes in the dynamics of 
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saturation and behavior of transport. Not only are fluctu­
ation levels modified by the effect of the finite-amplitude­
induced frequency shift, but saturation as a stationary phe­
nomenon is no longer possible. 

IV. CONCLUSIONS 

From simple fluid paradigms for electrostatic fluctua­
tions in tokamaks, it is evident that a variety of simple 
conventional notions concerning the saturation and spec­
tral transfer of drift wave turbulence must be altered. In 
particular, the spectral transfer by EX B advection pro­
duces numerous effects outside the classical phenomenol­
ogy of cascades in ordinary fluids. These effects include (1) 
the nonlocality and anisotropy of spectral transfer in long 
wavelength regimes, even under isotropic driving and 
damping; (2) the existence of nonconservative and reverse 
cascades in finite spectrum subranges in short wavelength 
regimes; and (3) the nonstationarity of saturated turbu­
lence due to the cross-coupling of distinct nonlinear cou­
pling processes, specifically the EX B and polarization 
drift nonlinearities. The first and third effects originate 
from the EX B nonlinearity and the way in which it de­
pends on the relationship between the potential and the 
nonadiabatic electron density. In the second case, the pres­
ence and nature of sources and sinks, arising from collec­
tive instability and dissipation, modify the classical de­
scription of cascades, even under transfer processes that 
are isomorphic to the advective straining of Navier-Stokes 
turbulence_ 

Because these effects occur at the most basic level of 
description, they ultimately alter most measurable quanti­
ties associated with turbulence, including wave-number 
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FIG. 6. Real space isodensity contours during a cycle. The structures are relatively isotropic and homogeneous near a cycle minimum. Midway through 
a cycle they show elongation in the x direction. At the end of a cycle the structures are seen to be breaking up. 

and frequency spectra, fluctuation levels, and transport 
fluxes. Because the models studied herein are inherently 
simple, it is reasonable to assume that these effects are 
robust; on the other hand, the specifics of their role under 
actual experimental conditions may depend on details be­
yond these simple models. 
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