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The dual cascade is generally represented as a conservative cascade of enstrophy to short 
wavelengths through an enstrophy similarity range and an inverse cascade of energy to long 
wavelengths through an energy similarity range. This picture, based on a proof due to 
Kraichnan [Phys. Fluids 10, 1417 (1967)], is found to be significantly modified for spectra of 
finite extent. Dimensional arguments and direct measurement of spectral flow in Hasegawa- 
Mima turbulence indicate that for both the energy and enstrophy cascades, transfer of the 
conserved quantity is accompanied by a nonconservative transfer of the other quantity. The 
decrease of a given invariant (energy or enstrophy) in the nonconservative transfer in one 
similarity range is balanced by the increase of that quantity in the other similarity range, thus 
maintaining net invariance. The increase or decrease of a given invariant quantity in one 
similarity range depends on the injection scale and is consistent with that quantity being carried 
in a self-similar transfer of the other invariant quantity. This leads, in an inertial range of Iinite 
size, to some energy being carried to small scales and some enstrophy being carried to large 
scales. 

I. INTRODUCTION 

Spectral transfer of energy and other dynamical invari- 
ants, such as the enstrophy, or mean-squared vorticity,1’2 
has long been considered an important aspect of turbu- 
lence. In particular, the nature and direction of spectral 
energy transfer has direct bearing on the way in which 
instability-driven turbulence is saturated, on the magnitude 
and shape of the spectrum, and ultimately on the nature of 
spatial transport produced by the turbulence. 

A number of recent studies underscore the importance 
of spectral transfer.3-5 For example, it has recently been 
shown from closure theory6 and direct measurement of 
spectral transfer rates in numerically integrated model 
equations,3 that dissipative trapped ion convective cell tur- 
bulence transfers energy from the long wavelengths of the 
driving instability to shorter wavelengths. This result has 
invalidated prior dogma which held that dissipative 
trapped ion convective cells would transfer energy to 
longer wavelengths, producing extremely large cell sizes 
and catastrophic transport. In related studies of broadband 
dissipative trapped electron mode turbulence,4V5 it has been 
found that the spectral transfer evinces two distinct sub- 
ranges at long and short wavelength extremes, separated 
by a highly complex intermediate subrange. In the long 
wavelength subrange, energy is transferred to small scales 
in a process that is distinctly anisotropic and nonlocal in 
wave-number space. Significant production of enstrophy 
accompanies the transfer to shorter wavelength. In the 
short wavelength subrange, nonlinear transfer very nearly 
conserves enstrophy. The constraint of two conserved qua- 
dratic quantities (energy and enstrophy) gives rise to an 
isotropic, local-in-wave-number space dual cascade with 
some energy flowing back toward the long wavelength 
subrange and enstrophy flowing toward shorter scales. 
These spectral transfer properties produce a distinctive en- 

ergy spectrum shape E( k, ,k,), with a flat elliptical plateau 
in the long wavelength subrange and a falloff beyond in the 
short wavelength subrange. 

The dual cascade observed in the short wavelength 
subrange of dissipative trapped electron mode turbulence is 
a manifestation of a transfer process first identified in two- 
dimensional (2-D) Navier-Stokes turbulence (and, by 
simple extension, quasigeostrophic turbulence). Under a 
dual cascade, it is envisaged that from the scale at which 
energy and enstrophy are externally injected into a system, 
the enstrophy is conservatively cascaded to smaller scales 
through an enstrophy similarity range (i.e., transfer pro- 
ceeds through every scale at the same rate), and energy is 
conservatively cascaded in the “inverse” direction to larger 
scales through an energy similarity range. The existence of 
two nonoverlapping similarity ranges, one for each of the 
two conserved quadratic quantities, is posited in order to 
satisfy the invariance of both the energy and the 
enstrophy.‘* The dual similarity range stationary spec- 
trum, with a k- 5’3 slope in the energy similarity range and 
a kp3 slope in the enstrophy similarity range, follows di- 
rectly from the dual cascade hypothesis and simple dimen- 
sional arguments and has been observed in 2-D neutral 
fluid flows,’ 

The dual cascade of 2-D Navier-Stokes turbulence has 
come to be a compelling paradigm for drift wave turbu- 
lence, a natural consequence of the near isomorphism of 
the Hasegawa-Mima’ equation with the quasigeostrophic 
equation. The dual cascade is frequently invoked in a va- 
riety of drift wave models in order to infer the character 
and magnitude of fluctuations at the largest scales of a 
system, or to explain excitation at scales large compared to 
those of the driving instability. As such, the dual cascade is 
a key element of turbulence driven by electron temperature 
(ve) modes.g More generally, it is assumed that the dual 
cascade is an element of spectral transfer for any system 
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possessing multiple quadratic invariants. Thus it figures 
prominently in the transfer dynamics of magnetohydrody- 
namic (MHD) turbulence.t” As an example, specific prop- 
erties of the dual cascade of three dimensional (3D) MHD 
have recently been invoked in order to predict ion heating 
rates in reversed field pinch discharges.” It is worth re- 
marking that the dual cascade applies to spectral transfer 
in an inertial range. An inertial range may or may not exist 
in plasma turbulence, due to the nonlocalized nature of 
plasma driving sources and sinks. Nevertheless, inertial 
range transfer is a powerful and revealing characterization 
of the behavior of nonlinearities that are themselves con- 
servative, and therefore would support an inertial range in 
the absence of dissipation. 

The conventional view of the dual cascade process is 
based on analysis of spectral energy and enstrophy flow in 
2-D Navier-Stokes turbulence for an infinite spectrum en- 
compassing wave numbers from zero to infinity. For a 
spectrum with a single falloff rate of kV3 over its entire 
range (O-W ), Kraichnan’ proved that there is a wave- 
number independent flow of enstrophy to high k, and no 
flow of energy. Such tlow defines anenstrophy similarity 
range. Likewise, for a spectrum with a single falloff rate of 
k-‘13, there is a wave-number independent flow of energy 
to low k, and no flow of enstrophy, detining an energy 
similarity range. In the kw3 spectrum, enstrophy is effec- 
tively injected at k=O and removed at k= 03, though no 
injection scale is specified in the analysis. In. the k-“3 
spectrum, energy is effectively injected at k= CO, and re- 
moved at k=O. Both spectra are singular in the sense that 
there is no physically distinguishable scale that is not either 
zero or intinity, i.e., the injection scale and the minimum 
and maximum wave-number cutoffs are all either zero or 
infinity. Because these singular spectra are required for the 
proof, true similarity ranges can strictly be said to occur 
only in these rather extreme and amorphous spectra. 

In fact, the standard stat.ionary inertial range spectrum 
in 2-D turbulence is not one of the singular spectra ana- 
lyzed by Kraichnan, but is forced or stirred at a finite scale 
ki;;jj’. It also has maximum and minimum wave numbers 
k max and kmi” corresponding to the smallest and largest 
inertial scales, typically set by dissipation and geometry. 
For drift wave turbulence, the spectrum is likely to be 
restricted to a very narrow range, perhaps encompassing 
no more than a single decade; For such finite spectra, it is 
crucial to account for the enstrophy carried in the energy 
flow and vise versa. Thus a self-similar inverse cascade of 
energy from kinj to kG, results in the destruction of a por- 
tion of the enstrophy carried with the energy flow. Enstro- 
phy is destroyed because it is proportional to the square of 
a spatial derivative (curl) of the flow, which necessarily 
becomes flatter as energy flows to large scale. This loss can 
be accommodated in an enstrophy conserving system only 
if enstrophy is created in some other part of the spectrum. 
The correct amount of enstrophy can be created if there is 
a self-similar cascade in the reverse direction (from k, to 
k,,& of an appropriate fraction of the energy. Under this 
scenario, self-similar cascades of energy proceed in both 
directions, with accompanying nonconservative Sows of 

enstrophy. The portion of energy flowing self-similarly in 
the reverse direction (to high k) is determined by the con- 
straint of enstrophy conservation. Specifically, the enstro- 
phy generated in the self-similar flow of energy to high k 
must equal the enstrophy destroyed in the self-similar flow 
of energy to low k. The above description applies to self- 
similar energy flow and the enstrophy carried with it. By 
symmetry, and in order to recover the results of Kraich- 
nan’s proof in the appropriate limits, there must also be a 
self-similar cascade of enstrophy, and it must proceed in 
both directions so as to yield zero net energy production 
from the accompanying nonconservative energy Rows. 
This picture represents the simplest way to satisfy energy 
and enstrophy conservation, to reduce to Kraichnan’sre- 
sults in the appropriate limits, and to account for the 
changes that occur in one quantity when the other quantity 
is transferred between different scales. 

In the present paper, spectral flows in numerical real- 
izations of Hasegawa-Mima turbulence in a finite spec- 
trum are measured and found to conform to this picture as 
formulated under simple dimensional analysis. The numer- 
ical results are obtained from spectral solution of the basic 
equation, with flow measurements achieved through direct 
evaluation of the triplet nonlinearity (of the power spec- 
trum evolution equation ) . The numerical’ results indicate 
that significant nonconservative flows of enstrophy occur 
in both directions, and are consistent with enstrophy car-- 
ried in self-similar energy flows proceeding in both direc- 
tions. The reverse energy flow (self-similar energy flow to 
high k) generates sufficient enstrophy to compensate for 
the loss of enstrophy resulting from the proper energy flow 
(self-similar inverse cascade of energy to low k). Likewise, 
nonconservative flows of energy, consistent with self- 
similar flows of enstrophy in both directions are observed. 
The reverse enstrophy flow (to low k) destroys sufficient 
energy to compensate for the generation of energy by the 
proper enstrophy flow (to high k). For infinite spectra 
(kmin+O, kAax+ 00 >, the dimensional analysis indicates 
that the reverse flows of energy and enstrophy vanish, 
while the nonconservative flows occur only in a narrow 
band near ki,j. Outside this band, the flows are self-similar 
and proceed according to the standard dual cascade hy- 
pothesis. 

II. DIMENSIONAL ANALYSIS 

Three constraints govern the flow of energy and en- 
strophy in a finite spectrum kmin < kq < km,,. The .flow 
configuration must account for changes in enstrophy (en- 
ergy) due to the transfer of energy (enstrophy), energy 
and enstrophy must be conserved, and the flow configura- 
tion must reduce to Kraichnan’s results in the proper sin- 
gular spectrum limits. These constraints are most easily 
accommodated by dividing the flow of each invariant 
quantity (energy and enstrophy) into two components, a 
component that is transferred self-similarly (from which 
the correct self-similar transfer is recovered in the singular 
spectrum limits) and a locally (in wave-number space) 
nonconserved component representing the energy or en- 
strophy carried the self-similar flow of the other quantity. 
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At the injection scale, all inputted energy and enstrophy 
must be partitioned into either of these components, so 
that 

&=E,+EN, Ro=flc+RN, (1) 

where E. is the injected energy, EC is the amount of in- 
jected energy carried in self-similar energy flows, and EN is 
the amount of injected energy in the nonconserving energy 
flows representing the energy carried by the self-similar 
enstrophy flows. Similar definitions apply to the inputted 
enstrophy 0,. Because enstrophy is mean-squared vortic- 
ity, the Fourier enstrophy Q(k) (defined as the enstrophy 
of a Fourier mode of wave number k) of any flow with 
Fourier energy E(k) is given by s1 (k) = k2E( k) . Thus the 
partition E,=E,+E,, with EN being the portion of in- 
jected energy carried by the self-similar enstrophy cascade, 
implies that 

EN= ki;;j2tI,. 

Likewise, 

f+k&&. 

(2) 

(3) 

Consider now the self-similar energy flow. Let Ep be 
the energy carried in a proper energy conserving cascade 
from k, to kmin. A quantity of enstrophy E&&j is carried 
in this cascade at the scale kLj’, but dwindles to Edc2min as 
the energy reaches kmin, a consequence of the smoother 
gradients associated with the large scale k;if,. Obviously, 
the proper cascade of energy Ep between ki,j and kmin pro- 
duces a net loss of enstrophy of magnitude EJ /&j-/&i,). 
This loss is the end result of the nonconservative enstrophy 
flow associated with the proper energy cascade. To assure 
overall conservation of enstrophy, enstrophy equal to the 
amount lost must be generated somewhere in the spectrum. 
This can occur if a portion of energy Er cascades conser- 
vatively in the reverse sense from k, to k,,,. The steeper 
gradients associated with a flow of energy E, at a scale k;jx 
results in a net production of enstrophy of magnitude 
E,( k2,, - ki2,j). Equating the net loss of enstrophy resulting 
from the proper cascade of energy with the net production 
of enstrophy resulting from the reverse cascade, the ener- 
gies EP and E, are 

E =E (&ax-k&) =E (1-J’) 
P 

’ (kz,,x-Gin) “(1-R2) ’ 

E,= EC 
(#nj-&*) =E (12-R2) 

(l@ k2 1 max- min I2 (1-P) ’ 

(4) 

(5) 

where the total amount of conservatively cascaded energy 
Ec=E,+Ep is split into proper and reverse components, 
I= ki”j/k,,, and R = k,i,/k,,, . From these expressions it 
is obvious that as km,,- m with k, remaining finite, 
E,-E, and E,dO, yielding a unidirectional self-similar 
flow to low k, consistent with the dual cascade hypothesis 
for k, finite. 

These arguments can be repeated for the conservative 
spectral flow of enstrophy. If slP is the portion of enstrophy 
undergoing a proper self-similar cascade from k, to k,,, , 
energy carried in this flow decreases from its value ~~,,j2 

at the scale kinj to Q#~.&. at k,,, i.e., a net amount of 
energy fl,( k;f - k&&x) is lost in the conservative enstrophy 
transfer. Consequently, there must be a portion of enstro- 
phy s1, reverse cascaded to kmin, which produces a net 
increase of energy st,(k& - kizj2). Equating the net 10~s 
and gain of energy in order to maintain energy conserva- 
tion, the quantities of enstrophy cascaded in the proper and 
reverse directions are 

R -~ (k;&ki;;j2) (I*-R2> 1 
P- c (k&;-k;:x)=ac (1-R2) i2’ 

n -n (k$-kkl;;a2x) (i-I*) R2 
‘- c(k~~-k;&)=“‘(l-R2);ir’ 

(6) 

(7) 

where &=$+& is the total amount of enstrophy con- 
servatively cascaded. Again, kmin*0 with kinj remaining 
finite implies that &-CO and $+a,. 

In the above discussions, the fraction of total injected 
energy that gets carried by the conservative enstrophy cas- 
cade EN, is not specified relative to the fraction of energy 
going into the conservative energy cascade EC. A reason- 
able hypothesis for this partition, based loosely on similar- 
ity and statistical homogeneity arguments, follows from 

(8) 
Note that for an infinite spectrum (k,,= 00, k,,=O) the 
ansatz of Eq. (8) applies solely to the proper cascades, i.e., 
spectral flows proceeding in opposite directions away from 
kiaj; otherwise it applies to flows moving in both directions. 
Equation (8) fixes the ratio of conservative to nonconser- 
vative flow since the nonconservative energy flow is gov- 
erned by the conservative enstrophy flow E,=i&.ki~jz. 
Thus E,=E,. From these considerations, it is apparent 
that the nonconserved flows in either similarity range are 
significant. Even for the infinite spectrum (km,= M, 
kmin=O, with kinj fmite), where the self-similar or con- 
served flows are entirely proper, the nonconserved flows 
remain, and they proceed in the reverse sense. The enstro- 
phy in the nonconserved enstrophy flow decreases like kw2 
as it cascades toward k,, = CO. Similarly, the energy in the 
nonconserved energy flow decreases like I@ as it cascades 
toward kmin=O. Consequently, the nonconserved flow is 
effectively confined to a region around ki,-j. Outside this 
region, flow is largely self-similar and proper, consistent 
with the dual cascade hypothesis. 

Clearly, for finite spectra of limited extent, departures 
from the dual cascade picture are significant, arising from 
both the large nonconserved flows, as well as the reverse 
self-similar flows. The fact that reverse self-similar flows 
can be large is illustrated in Figs. 1 and 2, which plot the 
conserved energy and enstrophy flows [Eqs. (4)-(7)] as a 
function of the injection scale, I= k,/k,, for 
R = kmdkmax =O.l. In the limit R+O, 1-O (R/I-O), the 
spectrum is infinite and all of the conservatively cascaded 
energy and enstrophy flow in the proper directions, Away 
from this limit significant fractions of the injected energy 
and enstrophy can flow in the reverse directions. In par- 
ticular, for I> 2-1’2 (I+R2) 1’2, the reverse energy flclw 
exceeds the proper energy flow. Thus, when ki, is some- 
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FIG. 1. The magnitude of the normalized self-similar energy flows in the 
proper and reverse directions as a function of I=kirci/k,,,, . Normalization 
is with respect to the total energy carried in self-similar flows. 

what more than halfway the distance from kmin to k,,,, 
both enstrophy and energy flow primarily to high k, a 
result strikingly at variance with the standard dual cascade 
picture. 

III. NUMERICAL ANALYSIS 

In order to determine the extent to which spectral flow 
conforms to the heuristic description of the previous sec- 
tion, the Hasegawa-Mima equation is solved numerically 
and spectral flow is measured for several spectrum config- 
urations. The Hasegawa-Mima equation 

&u--v: p:,~+v,~~+p~~~v~xz*vv~ $Lo, (9) 

describes collective drift wave fluctuations supported by 
fluid ions and adiabatic electrons linked through quasineu- 
trality. Here, (p is the electrostatic potential, 
PO= (cTJeB) ~5;’ is the diamagnetic drift velocity repre- 
senting EX B advection of the background density gradi- 
ent, ps= ( TJm& 1’2(eB/m,c)-1 is the ion gyroradius eval- 
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FIG. 2. The magnitude of the normalized self-similar enstrophy flows in 
the proper and reverse directions as a function of I=ki,j/k,, . Normal- 
ization is with respect to the total enstrophy carried in self-similar flows. 

uated at the electron temperature, and C,= ( TJmJ I” is 
the ion sound speed. Besides the diamagnetic drift, ion 
motion is governed by the polarization drift, which pro- 
duces both the linear dispersion and the nonlinearity. 
Physically, the polarization drift nonlinearity represents 
EX B advection of the EX B flow vorticity and corre- 
sponds to the nonlinearity of 2-D Navier-Stokes turbu- 
lence. The assumption of adiabatic electrons (n,=$) elim- 
inates linear instability, particle transport, and the 
enstrophy invariance-breaking EX B nonlinearity. l2 As is 
well known, the Hasegawa-Mima equation conserves both 
the energyAE= $ ( 4 1 2+ 1 VP 1 2> dx dv and the enstrophy 
R = j’ ( 1 V# I 2 + I V 1 4 I 2)dx dy, and produces a condensa- 
tion of energy at long wavelengths.’ The latter is a mani- 
festation that some energy undergoes an inverse cascade. 

The Hasegawa-Mima equation is solved spectrally by 
numerically integrating the coupled ordinary differential 
equations for the time evolution of the amplitudes of the 
spatial Fourier series representation of (p. The wave- 
number space is truncated to a finite number of modes with 
41 i( 4 1 representing the largest spectral domain. Finite dif- 
ferencing in time is accomplished with a gear method. 
Spectral flow of energy is measured by determining the rate 
of spectral energy transfer. 

Tk=-p&Re s kXk’*z(kl -kl )?&&&*. 

(10) 

The quantity Tk represents the rate at which energy is 
deposited into or removed from the mode k by the nonlin- 
ear transfer. For Tk <O, energy is transferred from the 
mode to other parts of the wave-number spectrum, while 
for T, > 0, energy is deposited into the mode from other 
parts of the spectrum. Typically, Tk is summed over the 
modes in a band in wave-number space, thus giving a mea- 
sure of the transfer rate into or out of the band. By exam- 
ining the transfer rate for all bands, it is usually possible to 
track the flow of energy through the spectrum. Enstrophy 
flow is determined by measuring the rate of enstrophy 
transfer, 

uk=p~~sR~ ; kXk’*z k2(kL A: )2&&-k&*. 
(11) 

Again, a band structure is utilized and the transfer into or 
out of all bands is observed. 

Spectral transfer is examined under two spectrum con- 
figurations. In one, an initial spectrum of randomly phased 
finite amplitude fluctuations is allowed to relax to a quasi- 
equilibrium configuration, a state characterized by no net 
transfer in the time averaged sense. A large potential am- 
plitude pulse is then applied at kinj and the subsequent 
prompt transfer of energy and enstrophy is tracked 
throughout the spectrum. In a second configuration, trans- 
fer is monitored under conditions more akin to a driven/ 
damped steady state. Here, the system is coherently forced 
at kinj with dissipative sinks at kmin and k,,,. After a 
steady state is established, a large pulse is again applied at 
kinj, and the subsequent prompt transfer is observed. In 
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FIG. 3. Energy transfer rate for bands with k,=const in numerical so- 
lutions of Hasegawa-Mima turbulence. Transfer is from a large pertur- 
bative pulse (at ky=7) applied to a quasiequilibrium spectrum. The 
error bars represent the standard deviation of the energy transfer rate 
about its mean value. 

both configurations, the prompt flow from the perturbative 
pulse is large compared to any preexisting flows. This en- 
sures observation of the transfer characteristics of the non- 
linearity, independent of the spatial arrangement or the 
relative strengths of the sources and sinks. This is neces- 
sary because in the steady state, the arrangement and 
strengths of the sources and sinks can dominate the flow 
pattern. Both spectrum configurations yield flow patterns 
that are essentially the same. 

The behavior evident in the computational flow pat- 
terns is generally more complicated than the transfer of the 
simple picture developed in the previous section. Figure 3 
shows the rate of energy transfer from a range of k,,= const 
bands spanning wave-number space. The transfer rate 
{vertical axis) is effectively an average obtained by sum- 
ming discrete values of the instantaneous transfer rate over 
a period covering several nonlinear interaction times. The 
error bars denote the standard deviation from the mean 
value plotted. A large negative spike occurs at k= k,, 
indicating transfer out of the band with the large amplitude 
pulse. Positive values on either side of kinj indicate that 
energy is transferred both toward kmin and k,, . The trans- 
fer is predominantly toward kmin; the steady rise in going 
to kin is produced both by condensation and by the re- 
verse flow of enstrophy to kti. The flow of energy to high 
k diminishes as k increases, consistent with the destruction 
of energy carried in the proper cascade of enstrophy. The 
rate of decrease is roughly consistent with the km2 scaling 
of the dimensional analysis. The run was terminated before 
there was any condensation of enstropy or energy at k,,, . 

The flow pattern for enstrophy is displayed in Fig. 4. 
Again enstrophy is seen to flow from k, in both directions. 
Here, however, more enstrophy flows toward high k than 
to low k. Condensation of enstrophy at kmin is clear evi- 
dence of a reverse enstrophy cascade but masks the non- 
conservative enstrophy flow associated with the proper en- 
ergy cascade. The flow of enstrophy to high k is roughly 

t 
I 

f 

-50-L-t--+ : t t I I I I I / I j i I i 1 i 
s;cr s F Y ? 

c! f s f? 
ky hand* 

8 s- * * ;n 

FIG. 4. Enstrophy transfer rate for the same case as Fig. 3. 

constant, within errors bars, over the enstrophy similarity 
range, It is worth noting that self-similar (steady-state) 
cascade would produce zero net transfer into or out of any 
band. Rere the tlow is the transient response to the pertur- 
bative pulse and represents the propagation of the bulk of 
enstrophy in the pulse to high k, before condensation at 
k UlSX’ 

It is likely that differences between the results of Figs, 
3 and 4 and the simple relations derived in the previous 
section stem both from limitations in the numerical work 
and the extreme simplicity of the dimensional analysis, In 
particular, the spectrum configuration is often arranged 
with ki, as the geometric of k,, and kmin. Among other 
things, this choice makes the fractional proper cascaded 
energies and enstrophies comparable ( E/Ecc-Q’Ctc). 
Moreover, there is some evidence that this scale represents 
a natural break point for dual cascades in relaxing spectra 
with no forcing or perturbative pulse. Under such circum- 
stances, kinj is typically closer to kmin than it is to k,,,. 
Consequently, there is considerable energy condensation at 
kmin before the transfer to high k reaches k,,,. Because 
condensation produces spectrum changes that then affect 
transfer, it becomes difficult to track the upward transfer 
all the way to k,, once condensation has begun at kmin. A 
second limitation results from the analysis of transfer into 
or out of bands of constant k, or ky . This band structure 
permits the examination of anisotropies of the transfer rate. 
However, for the Hasegawa-Mima equation, the transfer is 
found to be isotropic, in which case the constant k, or k,, 
band structure has the unwanted effect of potentially dis- 
torting measurement of transfer. For example, self-similar 
transfer of energy within a k, = const band (from large ky 
to small k,,) can decrease the enstrophy of the band, inde- 
pendent of the transfer occurring between bands. Another 
limitation arises from the effect of random fluctuations of 
the nonlinear interaction on the observed flow patterns. 
Even though the flow patterns are time averaged, some 
random component remains after averaging. Finally, the 
flow patterns represent the time average of a transient re- 
sponse to a perturbative pulse. The relaxation occurs on a 
time scale of several nonlinear interaction times, over 
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which the relaxation is monotonic. Hence, the direction of 
transfer under averaging would not differ from an instan- 
taneous ensemble averaged direction. However, the time 
average integrates the response as it evolves, an effect that 
must be taken into account in interpreting the figures and 
making inferences about transfer in steady-state situations. 
For this reason, the transfer is generally not tracked after 
significant condensation has begun. Before condensation, 
the time average captures the propagation of the pulse in 
wave-number space efTectively as a time exposure photo- 
graph. 

Each of the above difficulties suggests improvements 
for future computational work. However, there is consid- 
erable agreement between the simple model and the results 
of this imperfect computational analysis. Certainly, the 
measured flow patterns are considerably altered from those 
envisioned in the standard dual cascade hypothesis. Energy 
and enstrophy are transferred away from ki,j in both direc- 
tions. Moreover, there is evidence that the flow in a given 
direction away from kinj is not completely self-similar. 
Also, runs with inertial ranges varied by over a factor of 3 
indicate that the flow patterns tend toward the standard 
dual cascade configuration as the spectral range increases, 
i.e., the magnitude of the reverse (conservative) flows de- 
creases relative to that of the proper flows. 

IV. CONCLUSIONS AND DISCUSSION 

The notion that energy and enstrophy respectively un- 
dergo self-similar cascades to long and short wavelengths 
in turbulence conserving these quantities has been shown 
to be appropriate only for infinite spectra (kmin~0, 
k max-+ CO > away from the injection scale. Because enstro- 
phy (energy) is carried in wave-number space by a self- 
similar energy flow (enstrophy flow) and increases or de- 
creases depending on the direction of the flow, injected 
energy and enstrophy must flow from the injection in both 
directions. The energy lost in the proper self-similar cas- 
cade of enstrophy to high k is then compensated by the 
energy gained in a reverse self-similar cascade of enstrophy 
to low k. A similar statement applies to enstrophy lost and 
gained from proper and reverse energy cascades to low and 
high k, respectively. These constraints have been incorpo- 
rated into simple scaling expressions from which the mag- 
nitude of proper, reverse, and the non- self-similar flows 
are obtained. The standard dual cascade results are recov- 
ered from these expressions in the limit kmi”~O and 
k max- CO. These expressions therefore yield the dominant 
flow pattern of the infinite spectrum, a result often inferred 
from statistical mechanics arguments. 

Large reverse energy flows are predicted when kinj is 
near k,,,. This case is instructive in reference to r], 
turbulence,’ where it has been asserted that there is an 
inverse cascade of energy to scales given by C/II+ (where 
oPe is the electron plasma frequency) from the smaller 
scales of collective excitation at pe (the electron gyrorad- 
ius). With driving already at very small scales, it is likely 
that dissipation occurs at scales only slightly above pe, in 
which case Fig. 1 suggests that the dominant energy trans- 
fer would be toward short wavelengths, not the longer 
c/w,, scales.-Because enstrophy also flows to high k, the 
dominant non- self-similar energy flow would also be to- 
ward high k. 

This type of consideration clearly demonstrates that 
the practice of invoking a standard dual cascade for spectra 
with an inertial range bounded between limits not widely 
separated in wave-number space may not be valid. Even if 
damping is restricted to a region outside maximum and 
minimum cutoffs, the location of the scale at which fluc- 
tuations are excited within the region will play a significant 
role in the direction of energy flow. Moreover, because 
sources and sinks may in fact be distributed, with no true 
inertial range, determining the k space flow ultimately re- 
quires a knowledge of the spectrum. This, in turn, requires 
solution of the appropriate two-point equations, taking ac- 
count of both the distributions of sources and sinks and the 
spectral properties of the nonlinearities. 
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