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A simple, one-field, two-nonlinearity, drift wave model equation is derived to describe the 
dynamics of a nonuniform magnetized plasma by taking into account the effects of 
dissipative trapped electron response in the turbulence dynamics. Because of the nonadiabatic 
response of trapped electrons, mode couplings by both the EXB drift and the polarization 
drift nonlinearities are present. In this work, the statistical dynamics for this dissipative drift 
wave turbulence is investigated using the EDQNM (eddy-damped quasinormal 
Markovian) closure scheme. In particular, apart from the eddy viscosity, a large nonlinear 
frequency shift is shown to be induced by cross coupling of the two nonlinearities. 
Thus instability drive is modified by this turbulent back reaction. By taking into account this 
self-consistency effect, a wave kinetic equation is derived, and the density fluctuation 
spectrum is obtained in different parameter ranges. The results show that the dynamics of 
dissipative drift wave turbulence is fundamentally different from that of the familiar 
Hasegawa-Mima model, because EXB drift nonlinearity blocks the low-k condensation of 
fluctuation energy. It is shown that both the EXB drift nonlinearity and the nonlinear 
frequency shift effect transfer energy nonlocally from large to small scales and, in contrast to 
the predictions of dimensional analysis, their contribution to the nonlinear transfer 
processes are actually of the same order as that of the polarization drift nonlinearity, even 
within the Hasegawa-Mima regime. This results in a significant modification of the 
Hasegawa-Mima spectrum for the short-wavelength drift waves. 

I. INTRODUCTION 

Drift waves have frequently been associated with the 
observed low-frequency density fluctuations and energy 
confinement degradation in tokamaks. Thus drift wave tur- 
bulence has been of considerable interest in plasma fusion 
research. Despite many studies,‘+ the basic dynamics is 
still rather poorly understood. Most previous studies of 
this subject have utilized a simple, one-tied, nonlinear fluid 
model for the potential fluctuation (p known as the 
Hasegawa-Mima equation.’ In its derivation, the electron 
response is assumed to be adiabatic so that Z=& where K 
and $ are the normalized density and potential fluctua- 
tions, respectively. Because of the adiabatic electron ap- 
proximation, only the polarization drift nonlinearity ap- 
pears in the Hasegawa-Mima equation. This simple model 
equation is similar to the two-dimensional Navier-Stokes 
equation and admits two inviscid invariants of motion, i.e., 
the total energy and the total enstrophy. Therefore, based 
on intuition from two-dimensional hydrodynamic turbu- 
lence, the Hasegawa-Mima model of drift wave turbulence 
predicts an inverse cascade of total energy,2 from large k, 
to small k, . However, since it completely ignores density 
fluctuation dynamics by taking the electrons to be adia- 
batic, the Hasegawa-Mima equation is not a general model 
for drift wave turbulence, and conclusions reached based 
on it are not universal. Later on, “8” models3*4 were in- 
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traduced to simulate the nonadiabatic electron response by 
adding an “8” term to the electron density response func- 
tion, i.e., &=$k( 1 -iS,). In the “is” models, in addition 
to the polarization drift nonlinearity, the EXB drift non- 
linearity, induced by the EXB convection of the nonadia- 
batic electrons, also appears in the basic equation. It has 
been shown in numerical simulations that this EXB drift 
nonlinearity plays an important role in mode coupling 
processes3 However, most of the works3P4 using “is” mod- 
els are not self-consistent, in the sense that the effects of 
turbulent back reaction on the instability drive, because of 
the cross-coupling effect of the two nonlinearities, are to- 
tally ignored. Moreover, the dynamical interaction of the 
two nonlinearities were not properly treated. Conventional 
treatments analyze each class of scales individually, ignor- 
ing nonlocal interactions between the small and large 
scales. In particular, when considering the nonlinear dy- 
namics of the short-wavelength drift waves (i.e., in the 
Hasegawa-Mima regime, where k, ps- 1 ), the limit of 
Sk=0 was naively taken by completely neglecting the ran- 
dom modulational effect from large scale (i.e., k, p,(l) 
fluctuations. Also, most previous works on the “8” models 
are numerical simulations,3’4 and little analytical theory 
and understanding of these models is available. In a recent 
study by Gang et aL5 on a two-field model6 of dissipative 
drift wave turbulence, the statistical dynamics was investi- 
gated and closure equations were derived. However, the 
complexity of the renormalized closure equations derived 
for this two-field model prevented the authors from ana- 
lytically obtaining the saturation spectrum, etc. On the 
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other hand, recent works on very-long-wavelength drift 
wave turbulence,7.8 which is destabilized by dissipative 
trapped particle instabilities, revealed some novel features 
of drift wave turbulence. In particular, Diamond and 
Biglari’ showed that no long-wavelength condensation of 
fluctuation energy is possible in the dissipative trapped-ion 
convective-cell turbulence, where the nonlinear mode cou- 
pling process is through the EXB drift nonlinearity ef- 
fected by the EXB convection of the nonadiabatic trapped 
ions. This low-k condensation blocking effect due to the 
EXB drift nonlinearity was confirmed in simulations by 
Newman et aL* 

Obviously, the inhibition of long-wavelength conden- 
sation of fluctuation energy, effected by the EXB drift 
nonlinearity, will compete with the inverse cascade of flue- 
tuation energy, effected by the polarization drift nonlinear- 
ity. With the above observations, we are naturally 
prompted to construct a simple, one-field model of dissi- 
pative drift wave turbulence, which will properly incorpo- 
rate the nonadiabatic trapped particle response into the ion 
dynamics. In a toroidal geometry such as in tokamaks, 
drift modes fall into two branches. One is the usual slab- 
type Pearlstein-Berk mode which oscillates both radially 
and along the magnetic field lines, and is damped by ion 
Landau resonance. The other branch, the so-called 
toroidicity-induced mode, is slowly varying along the mag- 
netic field lines, i.e., kll gkL , and is localized radially. 
Since the toroidicity-induced modes are quasibounded, 
they experience minimal magnetic shear damping, hence, 
they are easily destabilized. Also, apart from the details of 
coupling, they are fairly well modeled by local theory. For 
this reason, a study of the local analog of these toroidicity- 
induced-like modes is more relevant. Therefore we con- 
sider a shearless magnetic field model. (The investigation 
of this model in a sheared magnetic field will be presented 
in a future publication.) We use a cool fluid model for the 
ions, and start from the ion continuity equation, in which 
the variation of the drift modes along the magnetic field 
lines is neglected. As for the dynamics of dissipative 
trapped particles, in order for us to construct a simple, 
one-field equation, we consider the trapped electron insta- 
bility, and assume that the trapped electrons are strongly 
dissipative (i.e., v&wk). Finally, the system of equations 
is closed with the quasineutrality condition. 

Before we systematically investigate the dynamics of 
the above model, we can intuitively anticipate some of the 
results. Because of the nonadiabatic response of the 
trapped electrons, the EXB drift nonlinearity exists, in 
addition to the familiar polarization drift nonlinearity en- 
countered in the Hasegawa-Mima equation. However, the 
nonlinear mode-coupling processes mediated by these two 
nonlinearities are distinctly different, since the EXB drift 
nonlinearity alone tends to transfer energy to small 
scales,‘.’ while the polarization drift nonlinearity alone 
transfers energy to large scales.2 In the case when both the 
nonlinearities coexist, the breakdown of enstrophy conser- 
vation by the EXB drift nonlinearity eliminates the famil- 
iar dual-cascade mechanism. Thus the usual nonlinear 
transfer picture and saturation spectrum for drift wave tur- 

bulence based on the Hasegawa-Mima model is expected 
to be modified by the interplay of both nonlinearities. 

Indeed, according to our analysis, we show that the 
EXB drift nonlinearity blocks the low-k condensation of 
fluctuation energy from the polarization drift nonlinearity. 
Even in the short-wavelength regime, where the polariza- 
tion drift nonlinearity is predicted to dominate by previous 
dimensional analysis,4 the EXB nonlinearity plays a sig- 
nificant role. Here, we enumerate the major results of this 
work: 

( 1) We show that the EXB drift nonlinearity transfers 
energy nonlocally from large to small scales, and that the 
polarization drift nonlinearity transfers energy locally from 
small to large scales. Because of this nonlocal versus local 
nature of the energy transfer process, the effect of the EXB 
drift nonlinearity is shown to be of the same order as that 
of the polarization drift nonlinearity, even in the short- 
wavelength regime. Thus approximating Sk=0 in this re- 
gime is inappropriate. 

(2) A nonlinear frequency shift is found to be induced 
by the cross coupling of the EXB drift and polarization 
drift nonlinearities, and it is of the order of the electron 
diamagnetic drift frequency. This nonlinear frequency shift 
effectively supplies another “nonlinearity” by self- 
consistently modifying the instability drive. It is shown 
that the energy ‘Ylow” mediated by this frequency shift 
effect is from large to small scales, as-is the transfer due to 
the EXB drift nonlinearity. 

(3) At large scales where k1 ~$41, it is shown that the * 
EXB drift nonlinearity dominates, and the fluctuation 
spectrum is determined by balancing it against the linear 
instability drive. The spectrum is shown to be rather flat 
over most of this regime. However, it decreases quickly to 
low levels near the crossover point kl p,={. The flatness of 
the fluctuation spectrum is due to the dominance of the 
E X B drift nonlinearity, which has only one inviscidly con- 
served quantity, the energy. According to the predictions 
of closure theory, the nonlocal transfer mediated leads to a 
flat spectrum. 

(4) At small scales where /cl ps- 1, however, all the 
nonlinear transfer processes, including the nonlinear fre- 
quency shift effect, have to be accounted for, even though 
the polarization drift nonlinearity is predicted to be dom- 
inant from naive dimensional analysis. This leads to a large 
modification of the Hasegawa-Mima spectrum, and the 
inverse energy transfer process by the polarization drift 
nonlinearity is greatly altered by the low-k condensation 
blocking effect of the EXB drift nonlinearity. 

The remainder of this paper is organized as follows. In 
Sec. II, the basic model equation is derived, and the prop- 
erties of the two nonlinearities are briefly discussed. In Sec. 
III, the EDQNM closure method is applied to the nonlin- 
ear model equation, and the nonlinear dispersion relation is 
obtained from one-point renormalization, where apart 
from the eddy viscosity terms, a nonlinear frequency shift 
term is found to be induced by the cross coupling of the 
two nonlinearities. The dynamic impact of this nonlinear 
frequency shift on the instability drive is discussed in Sec. 
IV. By including this self-consistent turbulent back reac- 
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tion, the wave kinetic equation for the density fluctuation 
spectrum is derived in Sec. V, and in Sec. VI, the stationary 
density fluctuation spectra are obtained in different spectral 
regimes. Finally, we summarize and discuss our results in 
sec. VII. 

II. MODEL EQUATION 

In this section, we derive a single-equation, dual- 
nonlinearity drift wave model. In a typical linear Ohmic 
confinement regime tokamak, the electron temperature is 
higher than the ion temperature, and we use a cool fluid 
approximation for the ions. In the derivation, the underly- 
ing instability of the system is the strongly dissipative 
trapped electron mode, which supplies an i&type instabil- 
ity drive. The strong dissipation allows the entire time ev- 
olution to be combined into a single nonlinear equation. 

We use a standard shearless slab geometry, in which x 
refers to the radial coordinate, y to the poloidal coordinate, 
and z to the toroidal coordinate, and the equilibrium quan- 
tities are functions of x only. The equilibrium magnetic 
field is I%= 3& In addition to the magnetic field, the equi- 
librium is characterized by electron density and tempera- 
ture profiles with basic scale lengths L, and LT, respec- 
tively. In the present model, no equilibrium radial electric 
field is assumed. 

As for the electron dynamics, we focus our analysis on 
the dissipative trapped electron regime,’ where the trapped 
electron response satisfies 

=i$ &fO{o, --*k[l$.rle(~~/~~-3/2)]). (1) 

Here, veff is the effective collision frequency, wp is the 
electron curvature drift frequency, & is the component of 
the nonadiabatic part of the perturbed distribution func- 
tion with wave frequency k, 6 is the fraction of trapped 
electrons, fc is the equilibrium distribution function, 
@*k = k,Y,,, = k s JL,, is the electron diamagnetic drift 
frequency, c, = J”-- T&“i is the sound velocity, ps=cs/C+ is 
the ion gyroradius, U, is the electron thermal velocity, and 
ve= L,/LT. For strongly dissipative trapped electron 
modes, veff B &+&~+ After taking this limit in Eq. ( 1) and 
integrating over velocity space, we obtain the nonadiabatic 
electron density response 

J; GnC;'A-i/ei&k @k - a*k( 1+ a'$%) 

n0 Tea veff 
, (2) 

where a = 3/2. Normally, a standard drift wave turbulence 
result predicts that ok N w*,/( 1 + kf p,‘) . However, in 
general, there may be a no&near frequency shlj’f wi away 
from ti*k/( 1 f k: pz), thus we write 

Since we order qe > 1, for simplicity, (ok - ~0;) - @*k is 
negligible compared to aT&*k. Then the nonadiabatic 
electron density response is given by 

s”,NAzi i&k & -aw%k+d 

no T& l’eff ’ 
(41 

and thus the quasineutrality condition leads to 

IeltPk -= 
r&o 

%k J; %k 
--i-u;-+ 
n0 sff n0 

(5) 

In Sec. III, we will show that the cross coupling of the two 
nonlinearities supplies a nonlinear frequency shift that is 
comparable to w*k, and that the dynamic impact of this 
frequency shift effect will be discussed in detail in Sec. IV. 
For now, we simply consider the case with wi = 0. We will 
come back to discuss the w@O case self-consistently in 
Sec. IV. 

We treat ions as a fluid, and use the continuity equa- 
tion, 

a& - dnO _ 
~-i-I’~-&-V*V&=-no(VI l fi, +V,, ?,, ), (6) 

where the perpendicular ion flow velocity is due to EXB 
and polarization drift flows. Again, variation of the drift 
modes along the magnetic field line is neglected, i.e., 
VII =O. Therefore the model becomes a quasi-two- 
dimensional problem. Then, in the case when w: = 0, the 
model equation is derived and is written as 

&(1-m )n+V,,$+Do g 
--L,D,[V, ($)Xf]-Vi n 

-l-p.gs(vI nx-8 “VI cp,“v: n)=O, (7) 

where the normalized ion density perturbation is n = E/no, 
the ion diamagnetic drift velocity is Ven = c&L, and 
Do = a &(p&‘/( LTLnv&. InEq. (7), thefourthtermis 
the EXB drift nonlinearity, which is induced by the EXB 
convection of the nonadiabatic electrons, and the fifth term 
is the polarization drift nonlinearity, which is exactly the 
nonlinear term used in the Hasegawa-Mima equation. The 
third term is the instability drive, which introduces an ef- 
fective iS drive, i$Dg. An energy sink can be modeled by 
adding a hyperviscosity term into the model equation, This 
leads to a finite band of unstable drift modes with a high-k 
cutoff. In this paper, we focus on the drift modes in the 
regime O<kp,<O(l). Without the third and the fourth 
terms, that is, without the nonadiabatic electrons, the 
model equation reduces to the original Hasegawa-Mima 
equation.’ From now on, we write k instead of kL as the 
two-dimensional perpendicular wave vector. 

In order to facilitate our analysis, we write the model 
equation in Fourier space as 

a w*k+ik2yDo i 
$iink- 1 +k5,; 4-k 1 +ppf (N;XB+N;oL) =O, 

(8) 
where NExB is the kth component of the EXB drift non- 
linearity, and is written as 
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EXB 1 
Nk = -iz L,Do 2 [ (kxk’) -21 

k’+k”=k 

x (k;-k;)n,&” ; (9) 

the corresponding kth component of the polarization drift 
nonlinearity NE’” is 

.oL=; psc, 2 [ (kXk’) l z^]p; 
k’+k”=k 

x (k”‘-k”) nk’nk” . (10) 

Note that in Bqs. (9) and ( 10) NFXB and NpoL are writ- 
ten’in a form symmetric in k’ and k”, whichkfollows nat- 
urally by the definition k=k’+k”. 

From Bq. ( 8 ) , the linear dispersion relation is straight- 
forwardly obtained by defining i(d/&) =@k, and is 

@*k . +‘o 
‘%=mp)+iy$))=l +pp,Z+l 1 +#p; - (11) 

The expression for the linear growth rate rL”’ justifies our 
previous statement that i$Do is the instability drive. 

To further understand the basic physics of this’model, 
let us first discuss the properties of the two nonlinearities 
by looking at the equilibrium statistical mechanics for the 
model equation (7). In order to describe the equilibrium 
properties of the system, we assume that there are no in- 
stability drive or damping effects present in the model. In 
the case when there exists onZy the polarization drift non- 
linearity NpoL= p&JVI nXz^) *VI (p:Vi n), the system 
has two conserved quantities. They are the total energy E 
and the generalized total enstrophy a, defined as 

E=i J--dV(ln12+p:lvl n12) 

=; ; (l+k$,2) InkI’, (12) 

a=; JdV(lp;V: n12+p,21V1 n12) 

=f ;$;tl+k2& lnk12* (13) 

The statistical mechanics prediction for the density fluctu- 
ation spectrum in an equilibrium state then is 

1 
(Ink12)=(l+~p:)(a+bk2p?) ’ (14) 

where a and b are Lagrangian multipliers. Thus the isotro- 
pic energy and enstrophy spectra are 

Ek=~kp~(l+#pS)(Ink12)= 
rbs 

zz$ (15) 

CIk=k2p;Ek= ?rPP,3 
a+bpp: ’ 

(16) 

Note that the equilibrium energy spectrum Ek decreases at 
high kp, while the equilibrium enstrophy spectrum in- 
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creases. This tendency of the system to push energy to 
large scales and enstrophy to small scales is the driving 
force behind the well-known dual cascade, of which the 
energy cascade is the “inverse” component. The inverse 
cascade of energy by the polarization drift nonlinearity was 
also shown dynamically by Hasegawa et a1.2 However, in 
the case when there also exists the EXB drift nonlinearity 
NEXB = - L,D,[V, (&/a~) Xz?j l VL n, the system then 
has only one conserved quantity, that is, the total energy 
defined in Bq. ( 12). The model does not conserve the total 
enstrophy. Following the same analysis, the equilibrium 
density fluctuation spectrum is 

(Ink12)=1+;2p~y 
s 

which becomes a constant spectrum in the long- 

(17) 

wavelength regime where kp,<l. Here, the constant c is a 
Lagrangian multiplier. Consequently, the isotropic energy 
spectrum is shown to satisfy 

Ek=mkp,, (y 

which is an increasing function of kp, Thus the energy is 
nonlinearly transferred to small scales by the EXB drift 
nonlinearity, and the long-wavelength condensation of 
fluctuation energy is prohibited. This is in distinct contrast 
to the properties of the polarization drift nonlinearity 
NpoL, and thus to the Hasegawa-Mima model. 

Ill. CLOSURE AND NONLlNEAR DISPERSION 
RELATION 

Before we proceed with the detailed nonlinear analysis, 
let us first write the model equations (8)-(10) in dimen- 
sionless form by defming the ion gyroradius ps as the unit 
of length, and the ion gyrofrequency fii=cJps as the unit 
of frequency. Then the dimensionless equations are written 
as 

a u,k+i$& i 
‘z- l+P ) nk+m Nk=o, (19) 

where the nonlinear term is: 

Nk=N;XB+N;oL 

=-ii& c [(kXk’)*z^](k;‘-k;)n,,n,,, 
k’+k”=k 

+; ,,+;=, [ (kXk’) -21 (k”2-k’2)?Zkdk,, . 

(20) 
Here, the dimensionless crossover parameter 5 (we will 
discuss the physical meaning of this parameter later) is 
defined as 

&A$- 
s s 

=aF($)@ (21) 

and the dimensionless parameter Do is defined as 
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(22) 

In order to find the nonlinear dispersion relation for 
this system, we need to carry out the one-point renormal- 
ization and find the renormalized eigenvalue equation for 
nl,. To renormalize the nonlinear equation (19), we em- 
ploy the EDQNM (eddy-damped quasinormal Markov- 
ian) closure scheme,” which is effectively an iterative clo- 
sure method, with the use of eddy damping to represent 
incoherent or higher-order wave correlations. Therefore, 
the nonlinearity can be written in terms of the driven 
waves, which are labeled with the superindex (2): 

Nk= c [ (kXk’) *2^] [i{(k;+k;‘) 
k’=k”-k 

(2) + (k’2-k”2)]n-pnk,, , 

and the driven fluctuations are the solution of 
(23) 

(kxk’) l i? 
= 1+k,,2 [-i~(k~-k,)+(k’2-k2)]nk’nk. (24) 

Here, notice that, in the above equation for nc), only those 
direct interacting waves, i.e., the k and k’ waves are kept. 

Thus the eddy damping rate Auk,,, which is introduced to 
reflect the nonlinear scrambling due to the interaction be- 
tween waves other than k and k’, must be determined 
recursively. Integrating Eq. (24), we have 

(2) (kXk*) l z^ 
nk;” = 1+k,t2 [-i&(kJ-k,J+(k’2--kZ)l 

t 
X df’eXp[(-iw~~++r~!-hWk,,)(t-t~)] 

xnk(t’>nk@‘). (251 

Further, making the ansatz for t> t’, 

(@(t)n(t’))k= Ink(o) I2 eXp[( -iW~“‘+~~o)-hWk) 

x (f-f)l, (26) 

and substituting Eqs. (25) and (26) into Eq. (23), we 
finally obtain the renormalized nonlinearity 

Nk= c i(kxk’);i12 l+k” Rk,k’,kt’ 
k’zk”-k 

x{[C2(k;2+k;2-k$ +k%‘?-V2) 1 
+i~k~(k’2-22k2)}Ink,1212k, 

where the propagator, 
(27) 

i 
Rk,k*,k” = 0) 

(@Lo) +w:, -&* ‘) ) + i( hWk + hOk, + hwkn - y;” - y;’ - 7;; ) ’ (28) 

represents the time scale of three-wave interactions. In this 
paper, we assume that the frequency mismatch is much 
smaller than the nonlinear propagator broadening, i.e., 

(0) @Lo)++ --w$-f&!ihOk+hWk~+AOk~~ , 

then Rk,k,,k,’ is written as 

Rk,k,,k,‘~(hWk+hWkr+AOk~‘--~‘)-Yk, wygy. 
(29) 

The above approximation can be easily justified in the long- 
wavelength limit, where the frequency mismatch is always 
zero. However, in the short-wavelength limit, this relation 
may be somewhat stressed. In particular, in the opposite 
limit where the frequency mismatch is large, the propaga- 
tor &&+,k” + Vrs (OLO’ + CO;’ - w;#) ) , then the weak turbu- 
lence calculation should proceed in the usual way. In de- 
riving the renormalized nonlinearity, we also ignore those 
spectral summands odd in k’, which effectively vanish. 

Now, let us discuss the renormalized nonlinearity Nk 
in Eq. (27). Notice that, if we had renormalized the EXB 
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drift nonlinearity (or the polarization drift nonlinearity) 
separately, we should have obtained only the first term (or 
the second term) inside the square brackets in Eq. (27). 
However, in the case when we have both the nonlinearities, 
an additional term, i.e., the last one in the curly brackets, 
which is the cross coupling of the two nonlinearities, ap- 
pears in the renormalized nonlinearity Nk It is exactly this 
term that supplies a large frequency shift to the standard 
drift wave frequency. 

Denoting Nk E ($ + id)+, the nonlinear dispersion 
relation is written 

%jtk+?i .k2,DO-df 

mk=lfk2+i l+kz * 

Here, the real part of Nk, 

(301 

g= k,=$-k L(k~~;i,;i12 Rk,k’,k” 

X [[2(k;2+k;2-k2,)+k2(k2-k’2)] I&j2, (31) 
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FIG. 1. Contributions to the eddy viscosity from (a) the EXB drift 
nonlinearity and (b) the polarization drift nonlinearity. 

represents the nonlinear damping effects, i.e., the eddy vis; 
cosity. The tirst term of IQ. (3 1) comes from the EXB 
drift nonlinearity. Its contribution to the eddy viscosity is 
positive for small k, then it becomes smaller and may even 
become negative for large k [see Fig. 1 (a)]. This trend 
implies that the energy transfer mediated by the E X B drift 
nonlinearity is from large to small scales. The second term 
of Eq. (3 1) comes from the polarization drift nonlinearity. 
Its contribution to the eddy viscosity, on the contrary, is 
negative for small k and becomes positive for large k [see 
Fig. l(b)]. This trend suggests that, for the polarization 
drift nonlinearity, the energy transfer is from small to large 
scales. These observations are consistent with the analysis 
from the equilibrium statistical mechanics in Sec. II. Ob- 
viously, the expression for $ reflects the competition be- 
tween the EXB and the polarization drift nonlinearities, 
while the comparison 2pkJ,” - k2k’2 defines the crossover 
wave number kc-c. According to this simple comparison, 
the EXB drift nonlinearity dominates in the long- 
wavelength regime where k < 6, while the polarization drift 
nonlinearity seems to be dominant in the short-wavelength 
regime where k> g. This conclusion can be also reached 
from dimensional analysis. As for the imaginary part of 
Nk, i.e., 

X (k’2-2k2) 1 t&t 1 2, (32) 

it comes from the cross coupling of the two nonlinearities, 
and supplies a large nonlinear frequency shift to the linear 
drift wave frequency. We will show in the next section, that 
d will greatly modify the instability drive through the 
turbulent back reaction. Since previous studies on this sub- 
ject only analyzed the two nonlinearities individually, this 
nonlinear frequency shift effect was overlooked. More gen- 
erally, greater attention to the impact of nonlinear fre- 
quency shift effects on drift wave turbulence dynamics is 
clearly called for. 

IV. DYNAMIC IMPACT OF THE NONLINEAR 
FREQUENCY SHIFT 

From Eq. (30), the nonlinear frequency shift wi is 
written as 

co;=& c 
[ (kXk’) -;I2 

k,+k,t=k (1+k2)(1+k”2) Rk*kf,k” 

x(k’2-2k2) I&t12, (33) 

where we have changed the triad relation from k”= k+ k’ 
to k= k’ + k”. In order to estimate the size of wi, we define 
the frequency shift parameter sk as 

4 sr------- 
k aw%$k 

x(k’2-2k2) I&‘12. (34) 

We approximate Rk,kP,k!r by its m ixing length value 

R-’ ,,k,,k,,aS(ps/L,)(kt+k’2+k”2). 

Thus one can see that there is a very large factor 
( L,Lr/pz> in the expression for s,. Since normally, 
I nk 1 2a pi/L:, Sk is expected to be of the order of 0( 7; ‘) 
(where r],> 1 ), in other words, wi is expected to be com- 
parable to Wan 

Since wi approaches (Tr]&*k, we need to revisit the 
electron dynamics, and include the turbulent back reaction 
in the derivation of the electron density response function. 
By keeping this frequency shift effect, and writing IQ. (6) 
in dimensionless form, we have 

&=[l+ik,&l-Sk)]&. (35) 

Once again, recall that Sk - 0( 7; ’ ) . At this point, we need 
to comment on the validity regime for the theory. In order 
to render the perturbative approach valid (in deriving the 
electrostatic potential fluctuation &), we need to ensure 
that I k,,& 1 --Sk) ] < 1, or else, a two-field model has to be 
used, instead. Thus, in this work, without loss of general- 
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ity, we simply consider the parameter regime where the 
crossover parameter c satisfies 0 < & < 1. Using the relation 
(35), and rederiving the model equation, we can easily find 
that the linear instability drive for mode k changes by a 
factor (1 -sk), that is, in Eq. (8), the Da in the second 
term changes to &( 1 -Sk). Thus the change of the linear 
instability drive is 

A#‘= - $‘sk. (36) 
This self-consistency effect will be included in the deriva- 
tion of the wave kinetic equation in the next section. Here, 
we also need to mention that, for consistency, since the 
corresponding change of De in the EXB drift nonlinearity 
is of higher order, i.e., of the order O(qe2), it is thus 
neglected. 

Now, let us discuss the physical implications of this 
self-consistent frequency shift effect. First, since the change 
of the linear instability drive Ayi” is proportional to $, we 
expect it to have a significant effect at short wavelength 
k- 1, which may lead to a sort of “energy transfer” pro- 
cess different from that played by the polarization drift 
nonlinearity alone. Meanwhile, in a relative sense, the fre- 
quency shift also has a dominant effect at the crossover 
regime, because the other two nonlinear-i&s compete with, 
and indeed almost cancel each other at the crossover point. 
Second, since Sk is negative at short wavelength k- 1 (see 
Fig. 2), it enhances the instability drive there; while at long 
wavelength k< 1, Sk becomes positive (see also Fig, 2), so it 
suppresses the instability drive. This observation suggests 
that the overall energy transfer, mediated by the nonlinear 
frequency shift effect, is from large to small scales. Thus 
this frequency shift effect, as well as the EXB drift non- 
linearity, will also compete with the inverse transfer of 
energy due to the polarization drift nonlinearity. 

V. WAVE KINETIC EQUATION 

In this section, we derive the wave kinetic equation for 
the density fluctuation spectrum I fik I ‘. If we multiply Eq. 
(19) by n$, substract its complex conjugate (product), 
and include the nonlinear frequency shift effect, the non- 
linear evolution equation for the spectrum I?& I 2 is found 
to be 

sk 

I 
Sk>0 

+ k 
1 

Sk<0 

FIG. 2. s,>O for small k, and S, <O for large k. 

&-2ff’(l-4, lnk12+& T,=o, (37) 

where Tk represents the nonlinear transfer rate, and is 
written as 

Ti+&Z~+it$?Zk 

=2 Re(Nknmk) 

=Re ,,+zzk [(kXk’) ‘21 [--ig(k;‘--k;) 

+ (kn2-k’*)] (~kt~k-~d-k). (38) 

In order to calculate the three-body correlation function 
(nktnk-kpn-k), we again employ the EDQNM closure 
method. We write 

(nk,n,+k’n-k) = (f&tk-k&k) + (nkpf-$!k’n-k) 

f (nk&&!;>, (39) 

where the superindex (2) refers to the driven waves. Sub- 
stituting Eqs. (25) and (26) into the above relation, we 
obtain 

Tk+* c [(kXk’) ‘?j28k,kt,ktt(k;-k;) 
k’+k”=k 

‘g Inkt121nkft12+~ j~kt,/*/nLIz-‘~ 

+ ,,+;,=, [ (kXk’) l il2ek,k,,k”(kn2-kr2) g lnkp~21~kpti2+k~~$ bkd*bki* 

Here, &k,&#? is defined by noticing 

eLkt,k”‘&k’,kt! =Rk,-k)‘,k’=Rk,-kl,kll =R-ktt,-kt,-k, 
(41) 
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Here, again, we assume that the frequency mismatch is 
much smaller than the nonlinear propagator broadening, 
that is, we expect the system to be in a strong turbulence 
regime. This can be easily justified in the long-wavelength 
limit, where the frequency mismatch is always zero, but 
may be marginal in the short-wavelength limit. Notice that 
the first summation in the Tk equation comes from the 
EXB drift nonlinearity (denoted as TfXB), which is an- 
isotropic in k space, and the second summation comes 
from the polarization drift nonlinearity (denoted as 
TkpoL) . 

In a stationary state, since (a/&) 1 nk 1 2=0, the station- 
ary spedrum for 1 ?&?k 1 2 satisfies 

2$&(1--q) Ink12=T;XB+T;oL, 
where ,z 

(42) 

TEXB=c2 x IkXk’128k,kr,kr,(k;r-k;) 
k’+k”=k 

x 
k;--k; k;‘+& 
w jnk’12/nk”12+ r+k,z lnkd2bk12 

--$$ lnkp121nk12 3 (43) 

Tk 
PO== k,+$,=k 1 kxk’ 12ek,k’,k”(kn2-kr2) 

( 

k’2 _ k”2 ,I@.-# 
x l+k> Ink,121nkt’12+ l+k’2 lnkN12bk12 

+T;;,: l~kf/21~k12)~ (44) 

2 Li- Sk=- ‘$ - 
IkXk’l’ 

3 Ps ,,+gxk (l+k2>(1+kN2) ek,k’*k” 

X (kf2-ik2) 1 nk’ 12. 

We will solve Bq. (42) in the next section. 
(45) 

. 

Vi. STATIONARY SPEC-fRlJM 2t$+ lnk12=~2 c IkXk’128k,k,,k,,(-2kE) 
n k’+k”=k 

As we have mentioned in Sec. IV, in this study, we 
focus only on the case of which 0 < c < 1. In this section, 
we will try to solve for the stationary density fluctuation 
spectrum in the regime O<k<l. According to the domi- 
nant role played by the two nonlinearities, -we define dif- 
ferent regimes of interests as follows: ( 1) The EXB regime 
is the long-wavelength regime where the EXB drift non- 
linearity dominates, i.e., O<k < S; (2) The crossover regime 
is the mid-wavelength ky 0( g) regime where the two non- 
linear-i&s are comparable and nearly cancel each mother, 
thus their cross-coupling effect is crucial in this regime; ( 3 ) 
The Hasegawa-Mima (HM) regime, or the polarization re- 
gime, is the short-wavelength regime where the polariza- 
tion drift nonlinearity is thought to be. dominant, i.e., 
C-=Z k<l. In the regime where k> 1, the fluid approxima- 

I”$ 
(1) _ (2) (3) (4) 

ExB I. cross-over H-M 

high saturation EveI I 

.:-----$ ; 
: \, I : , \/j-L;? -_ 
i \ 
j !.\ j 
: \ / 
f ?I. low saturation level 

:- 

, 

I 

I= 
0 5 1 

FIG. I$ Different regimes of interests and their sattiration levels. 

tion breaks down, and kinetic effects play an important 
role. Thus we will focus our discussion in the regime 
O<kg 1. These regimes of interest are indicated in Fig. 3. 

According to the simple estimate obtained by balanc- 
ing the different terms in Bq. (42), the saturation level of 
I nk I 2 in the EX B regime is found to be much higher than 
that in the polarization regime (see also, the fluctuation 
level sketched in Fig. 3). We roughly can write the satu- 
ration level of I nkl 2 as I nk I 2~ [( l/k2) (pf/Lz)]. This 
trend is also confirmed by computer simulations,8P” in 
which a sharp transition of the fluctuation level from the 
EXB regime to the polarization regime is observed,‘* as 
well. In the remaining part of this section, we will solve for 
the stationary spectra in different parameter ranges. 

A. Spectrum in the EXB regime 

In this regime, 0 < k <c < 1. For k < 1, compared to 
the EXB drift nonlinearity, the frequency shift nonlinear- 
ity and the polarization drift nonlinearity can be neglected. 
Thus the equation we are going to solve becomes 

k;-k; 
x l+k2 I~flkp121nk’~1? 

(46) 
. 

where we have used the k’ and k” symmetry. 
Obviously, one can tell from the k,, dependence in Eq. 

(46) that this is an anisotropic system. However, to sim- 
plify the problem, we view I nk I 2 as having been azimuth- 
ally averaged in k space (in other words, take 1 nk 12 .to be 
isotropic in k space). Thus j &I 2 is approximated as a 
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function of k2 only. This approximation is clearly better in 
the Hasegawa-Mima regime than in the EXB regime. As 
for the propagator 6k,kP,k#, it is a function of the eddy 
damping rate ho. Thus, theoretically, the propagator is 
determined recursively. However, since ek,k’,&” represents 
the time scale for three-wave interactions, and in this 
model, we have a natural time scale for mode broadening, 
i.e., the instability growth rate, we can approximate 

2 2 
(47) 

where k2m=max(k2,k’2,k”2). Also, notice that all the non- 
linear mode-coupling terms in Eq. (46) are products of 
two density fluctuation functions, and since the fluctuation 
level in the EXB regime is much higher than that in the 
polarization regime, we can neglect the contributions from 
the fluctuations in the polarization regime. Thus we only 
keep the summation until the crossover point 5. Thus Eq. 
(46) is written 

k$ lnk12cr? ,kq<l ~k;2[-+~~121fZ~~t12 
n m 

+2tlnk*12+ Ink”12) lnk12]- (48) 

Notice here that k, k’, and k” are all in the EXB regime 
and are comparable, so we can use the Taylor expansion 

Ink’j2= lnk12+(k’2-#) 2 Ink12* (49) 

Ink-kt12=lnk12+( Ik-k’12--k2) $2 Ink/** (50) 

Substituting Eqs. (49) and (50) into Eq. (48), and aver- 
aging over the angle between k and k’, we have 

5 lnk(2E ,kFc,k’2[ (@-2kp2)lnk12$ InkI 
n 

-2(k’l-IZk”)($ Inki2)“]. (51) 

NOW, we can transform the summation in Eq. (51) into 
integral form by defining 

and 

tds. 

We finally obtain an ordinary differential equation for 
I(t) =I(@) as 

I(k) 

I(O) 

FIG. 4. Spectrum of Z(kr) in different regimes. 

I(t) dI(t) T+7re 
dl(t) 2 

x dt . t-1 (521 

The second term on the right-hand side of the above equa- 
tion is 0(12) order smaller than the first term, and thus 
can be neglected. Solving this ordinary differential equa- 
tion, we obtain the density fluctuation spectrum in the 
EXB regime as 

&@) -I(O) + 
2 Pi 

-7 ( 

3# 
rr -$n l-;-p . 

1 

Hence, in the k<l limit, 

3 lp,2k2 
I@) --I(O) -Igp ‘zz p * 

n 

(53) 

(541 

The spectrum in this regime is plotted in Fig. 4. From the 
expression in Eq. (53), one notices that the fluctuation 
spectrum I(k2) changes very quickly from a relatively flat 
density fluctuation profile to a very small fluctuation level 
near the crossover point k-g. This suggests a sharp 
change of the fluctuation level upon transition from the 
EXB regime to the polarization regime. 

6. Spectrum in the Hasegawa-Mima regime 

In this regime, we have Cj < k < 1, so the polarization 
drift nonlinearity is supposed to be dominant. However, in 
the following calculations, we will show that the leading 
terms in the polarization drift nonlinearity cancel exactly. 
Hence iVLoL actually is of the same order as NEXB and the 
frequency shift nonlinearity. This cancellation has also 
been observed by Hasegawa and Mima’ and by Galeev.12 
As a consequence, ali the nonlinearities must be retained in 
the spectral calculation for the Hasegawa-Mima regime. 
Thus we expect large modification to the Hasegawa-Mima 
spectrum in this regime. The equation to solve is 
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k2(k’2-2k2) 
2k3F \nklz=~~2 c [kXk’12@c,k’,k” (l;k2)(l+k,,q (‘~dnk1~+~~ c IkXk’12ek,kf,k”(k~--k;) 

n k’+k”=k k’+k“=k 

~kt121nk”12+ l+k’ “+“; ,~~,,,21~k/2-~+;~ lnk?/2/nk12) 

lnk~121nkf~12+ 
krt2- # 

1 +k’2 + k,+;,=k IkXk’12ek,kr,kdk”2-k’2) 

kr2-kJl2 
l+k2 

Again, we assume isotropic turbulence, i.e., I nk 1 2 is a function of ,@ only. Since the saturation level 1 nk 1 2 is much 
higher in the EXB regime than that in the polarization regime, we only consider the major nonlinear spectral transfer 
processes as shown in Fig. 5, that is, we only consider the triad interactions between the modes k, k’, and k-k’, with 
1 kl - I k-k’ 1 N 0( 1) in the polarization regime and 1 k’ 14 1 in the EXB regime in the summation over all the k’ modes. 
+hk I&. (55’) can be written as 

IkXk’l” 2$p 
‘$5 lnkj2=-$ kzg F 

IkXk’l” 2$ 
(1+k212 jnk~121nk12- c k2 m Ink’ 

n k’65 

IkXk’l” 2/$ 
- k;t Tl+p lnk’~21nk12-; k& 

IkXk’12~ Ink 121 
k2 l+k ’ nk 

‘k::“2+$ lnk#121nk12. 

.k’ .- I2 

Notice that all the contributions from both the nonlinear 
frequency shift effect (the first term on the right-hand 
side) and the EXB drift nonlinearity (the second and the 
third term) are negative. In other words, they effectively 
transfer energy nonlocally from large to small scales. Also, 
notice the cancellation of the leading-order terms in the 
polarization drift nonlinearity (the last two terms). This 
cancellation is due to the fact that, for the polarization drift 
nonlinearity, the nonlinear self-damping (the tifth term) 
balances the nonlinear mode-coupling noise (the fourth 
term). This cancellation also suggests that the nonlinear 
transfer process mediated by the polarization drift nonlin- 
earity is, to leading order, a ZocaZ transfer. Indeed, note 
that, for “equilateral triads” with I k I- 1 k’ I- I k-k’ I, no 
cancellation occurs, so that local transfer persists. Thus the 
net effect of the polarization drift nonlinearity is compara- 
ble to the other nonlinear terms. Using the Taylor expan- 
sion in Eq. (50) (since k’( 1) and averaging over the angle 
between k and k’, we arrive at 

( k&k’2h12) InkI2 

+& ( k&k’21n,t12) InkI2 

+p= k’<g 
’ 2p ( c kt4~nkr12) $ lnk12=0y (57) 

2ink-kr12 

(56) 

ity, and the fourth term from the polarization drift nonlin- 
earity. Again, by applying the transformation 

c (Ak)2=2a ‘k’dk’, 
Ik’lG’ s 0 

I(k2) = 1 nkl 2/(Ak)2, t&2 

and roughly approximating the fluctuation level in the 
EXB regime as a constant (since the fluctuation spectrum 
in that regime is fairly flat), i.e., 

Energy Transfer Processes 

1 k’<<l ] 

0 4 
- k 

where the second term comes from the nonlinear frequency 
shift effect, the third term from the EXB drift nonlinear- FIG. 5. Energy transfer processes (in and out of the k- 1 mode). 
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1 P,” 
I(r’)‘@~, 

we finally obtain an ordinary differential equation for I(t) 
in the polarization regime as 

dI(t) m=[ -2-g (l+$ f-;&]df. (59) 

Solving this ordinary differential equation, the density fluc- 
tuation spectrum in the polarization regime is 

:r~~-(~)-‘.5(lt8/n)(~)-l’~~ 

X exp -g (k2-12) . 
( ) 

The spectrum in this regime is also plotted in Fig. 4. For 
purposes of comparison, in the case when there is no linear 
instability drive, the stationary spectrum has the following 
scaling: 

I(P),: 1 k3(1+k2)l’Te’ 
One can see that the density fluctuation spectrum in this 
regime is a decaying spectrum, in contrast to the 
Hasegawa-Mima spectrum which has a bump around 
k-l. 

At this point, we can see that the above results of our 
analysis are consistent with previous experimental obser- 
vations. That is, according to the results of the far infared 
(FIR) laser scattering, l3 the wave-number spectra were 
observed to increase toward the longest measured scales. 
Historically, this observation was ascribed to the conven- 
tionally acknowledged inverse cascade and local transfer 
mechanism in wave-number space of the polarization drift 
nonlinearity in 2-D plasma turbulence, which is clearly 
inappropriate according to our analysis. On the other 
hand, our analysis also suggests the importance of the 
long-wavelength drift wave turbulence, where the EXB 
drift nonlinearity dominates. In particular, when consider- 
ing the shear flow generated by the turbulent Reynolds 
stress in the L-+H transition, the large-scale (long- 
wavelength) fluctuations (where the fluctuation level is 
higher) will obviously play a very important role.r4 

VII. CONCLUSIONS 

In this paper, we derive a one-field, two-nonlinearity 
model equation for dissipative drift wave turbulence. In the 
model, the nonlinear mode couplings by both the EXB 
drift and the polarization drift nonlinearities are present. 
The statistical dynamics for this dissipative drift wave tur- 
bulence is investigated using the EDQNM closure method, 
and the stationary density fluctuation spectrum is obtained 
in different spectral ranges. Here, we emphasize the follow- 
ing major conclusions: 

( 1) We show that the EXB drift nonlinearity transfers 
energy nonlocally from large to small scales, and that the 

polarization drift nonlinearity transfers energy locally from 
small to large scales. Because of this nonlocal versus local 
nature of the energy transfer process, the effect of the EXB 
drift nonlinearity is shown to be of the same order as that 
of the polarization drift nonlinearity in the short- 
wavelength regime. Thus, as we have mentioned, approxi- 
mating Sk=0 in a nonlinear model for this regime is 
grossly invalid. 

(2) A nonlinear frequency shift is induced by the 
cross-coupling of the EXB drift and polarization drift 
nonlinearities, and is comparable to the electron diamag- 
netic drift frequency at saturation. This nonlinear fre- 
quency shift effectively supplies another “nonlinearity” by 
self-consistently modifying the instability drive. It is shown 
that the energy transfer mediated by this frequency shift 
effect proceeds from large to small scales, as is the transfer 
by EXB drift nonlinearity. 

(3) At large scales where kl ~$4 1, it is shown that the 
EXB drift nonlinearity dominates, so the fluctuation spec- 
trum is determined by balancing EXB transfer with the 
linear instability drive. The spectrum is rather flat in this 
regime, and it decreases quickly to low levels near the 
crossover point (k, p,-l). The flatness of the fluctuation 
spectrum is due to the dominance of the EXB drift non- 
linearity, which has only one inviscidly conserved quantity, 
the energy. According to closure theory, the nonlocal 
transfer of energy between different drift modes leads to a 
flat spectrum. 

(4) At small scales where k, ps- 1, however, all non- 
linear transfer processes, including the nonlinear frequency 
shift effect, and the instability drive have to be accounted 
for, despite the fact that the polarization drift nonlinearity 
is predicted to be dominant by dimensional analysis. This 
leads to a large modification of the Hasegawa-Mima spec- 
trum. Also, the inverse energy transfer process by the po- 
larization drift nonlinearity alone is greatly altered by the 
low-k condensation blocking effect of the EXB drift non- 
linearity. These results suggest the speculation that the dy- 
namics of short-wavelength drift wave turbulence 
(k, ps- 1) is in fact, controlled by longer-wavelength con- 
vective cells, which are more difficult to observe. 

Finally, we point out that more work is needed for this 
dissipative drift wave turbulence model, such work in- 
cludes the nonlocal theory (Le., in a sheared magnetic 
field),15 and the velocity shear flow effects on the interac- 
tion of the two nonlinearities. These works will be pre- 
sented in future publications. 
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