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Abstract

A model has been developed to study the global
complex dynamics of a series of blackouts in power
transmission systems [1, 2].  This model has included a
simple level of self-organization by incorporating the
growth of power demand and the engineering response to
system failures. Two types of blackouts have been
identified with different dynamical properties. One type
of blackout involves loss of load due to lines reaching
their load limits but no line outages. The second type of
blackout is associated with multiple line outages. The
dominance of one type of blackouts versus the other
depends on operational conditions and the proximity of
the system to one of its two critical points. The first
critical point is characterized by operation with lines
close to their line limits.  The second critical point is
characterized by the maximum in the fluctuations of the
load demand being near the generator margin capability.
The identification of this second critical point is an
indication that the increase of the generator capability as
a response to the increase of the load demand must be
included in the dynamical model to achieve a higher
degree of self-organization. When this is done, the model
shows a probability distribution of blackout sizes with
power tails similar to that observed in real blackout data
from North America.

1. Introduction

The first version of the ORNL-PSerc-Alaska (OPA)
model of series of blackouts in power system
transmission systems was proposed in [1, 2].  This first
version of the OPA model showed how the slow
opposing forces of load growth and network upgrades in
response to blackouts could self organize the power
system to dynamic equilibrium.  Blackouts were modeled

by overloads and outages of lines determined in the
context of LP dispatch of a DC load flow model. This
model showed complex dynamical behaviors and has a
variety of transition points as a function of increasing
power demand [3].  Some of these transition points have
the characteristic properties of a critical transition.  That
is, when the power demand is close to a critical value,
the probability distribution function (PDF) of the
blackout size has an algebraic tail and across the critical
point the system changes sharply.  One such
consequence of the critical transition is that at these
transition points, the power served is maximum and the
risk for blackouts increases sharply.  This fast variation
near the critical point is illustrated in Fig. 1.  Therefore,
it may be natural for power transmission systems to
operate close to and somewhat below those points.
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Fig. 1. Power served and number of
lines outage for a tree network with 190
nodes as a function of the power
demand.



The fact that, on one hand, there are critical points
with maximum power served and, on the other hand,
there is a self-organization process that tries to maximize
efficiency and minimize risk may lead to a power
transmission model governed by self-organized criticality
(SOC) [4].  

The operation of power transmission systems results
from a complex dynamical process in which a diversity
of opposing forces regulate both the maximum
capabilities of the system components and the loadings
at which they operate. These forces enter in a highly
nonlinear manner and may cause a self-organization
process to be ultimately responsible for the regulation of
the system.  This view of a power transmission system
considers not only the engineering and physical aspects
of the power system, but also the engineering,
economic, regulatory and political responses to blackouts
and increases in load power demand.  A detailed
incorporation of all these aspects of the dynamics into a
single model would be extremely complicated if not
intractable due to the human interactions involved.
However, it is useful to consider simplified models with
some approximate overall representation of the opposing
forces in order to gain some understanding of the
complex dynamics in such a self-organized framework
and the consequences for power system planning and
operation.

The OPA model is motivated by analyses of
NERC data that indicate power tails in the probability
distribution of the size of North American blackouts
[5,7].  (Power tails decay as according to a power law and
are also exhibited by complex systems near criticality.)   
These observations indicate the non-Gaussian character of
the blackout size probability distributions and are of
concern because they indicate a much larger risk of large
blackouts than might be expected.  Confirming and
understanding this power dependence in the probability
distribution tails is of course very important in doing
any risk analysis of power systems.
  Note that transition points are essentially determined
from power systems physics and engineering constraints,
however, the dynamical evolution involves aspects that
are less clearly defined by simple deterministic rules.
These components of the model may be developed at
different levels of complexity representing different
approximations to the “real” system.

The main purpose of the OPA model is to study the
complex behavior of the dynamics of series of blackouts.
In this paper we examine critical points of the OPA
model to understand them better.  This understanding
allows us to extend the modeling of the self-organization
of the system to represent generator upgrades as well as
network upgrades.  With this improvement to the OPA
model, we demonstrate self-organization of the system to
a critical point at which the probability distribution of

blackout size resembles the probability distribution of
the NERC data.

2. OPA fast dynamics blackout model

In the OPA model of [1,2], the dynamics involves
two intrinsic time scales. There is a slow time scale, of
the order of days to years, over which load power demand
slowly increases and the network is upgraded in
engineering responses to blackouts.  These slow
opposing forces of load increase and network upgrade self
organize the system to a dynamic equilibrium.  These
slow dynamics are summarized in Appendix I.  There is
also a fast time scale, of the order of minutes to hours,
over which cascading overloads or outages may lead to
blackout.

Fig. 2. A 94-node tree network with 12
generators and 82 loads.

To investigate the critical points of the OPA model
in section 3, we suppress the modeling of the slow
dynamics responsible for the self-organization and study
only the fast dynamics of the blackouts.  That is, we fix
the network by suppressing the network upgrades and
treat the load demands as deterministic or random
parameters to be specified as inputs to the model. This
section explains the fast dynamics of the OPA model.

In this paper, we investigate the blackout
dynamical model applied to ideal grid networks that have
a tree structure. An example of a tree network with 94
nodes is shown in Fig. 2.

In any network, the network nodes (buses) are either
loads (L) (gray squares in Fig. 2), or generators  (G),
(black squares in Fig. 2). The power Pi injected at each
node is positive for generators and negative for loads, and



the maximum power injected is Pi
max . The transmission

line connecting nodes i and j has power flow F ij,
maximum power flow Fij

max , and the impedance of the

line z ij.  There are N N NN G L= +  total nodes and N l

lines, where NG is the number of generators and NL is the
number of loads.

The blackout model is based on the standard DC
power flow equation,

F AP= (1)

where F is a vector whose NL components are the power
flows through the lines, F ij, P is a vector whose NN–1
components are the power of each node, P i, with the
exception of the reference generator, P0, and A  is a
constant matrix. The reference generator power is not
included in the vector P to avoid singularity of A  as a
consequence of the overall power balance.

The input power demands are either specified
deterministically or as an average value plus some
random fluctuation around the average value. The random
fluctuation is applied to either each individual load or to
“regional” groups of load nodes.

The generator power dispatch is solved using
standard LP methods.  Using the input power demand,
we solve the power flow equations, Eq. (1), with the
condition of minimizing the following cost function:

Cost = ( ) - ( )
Œ Œ

Â ÂP t W P ti
i G

j
j L

(2)

We assume that all generators run at the same
cost and all loads have the same priority to be served.
However, we set up a high price for load shed by setting
W = 100. This minimization is done with the following
constraints:
1) Generator power 0 £ £ ŒP P i Gi i

max

2) Load power P j Lj £ Œ0

3) Power flows F Fij ij£ max

4) Power balance Pi
i G LŒ »

Â = 0

This linear programming problem is numerically solved
using the simplex method as implemented in [6].  The
assumption of uniform cost and load priority can of
course be relaxed but changes to the underlying dynamics
are not likely from this.

In solving the power dispatch problem for low load
power demands, the initial conditions are chosen in such
a way that a feasible solution of the linear programming
problem exists.  That is, the initial conditions yield a
solution without line overloads and without power shed.
Increases in the average load powers and random load
fluctuations can cause a solution of the linear
programming with line overloads or requires load power

to be shed. At this point, a cascading event may be
triggered.

A cascading overload may start if one or more lines
are overloaded in the solution of the linear programming
problem. We consider a line overloaded if the power flow
through this line is within 1% of Fij

max . At this point,

we assume that there is a probability p2 that an
overloaded line will outage.  If an overloaded line
outages, we reduce its corresponding Fij

max  by large

amount (making it effectively zero) to simulate the
outage, and a new solution is calculated. This process
can require multiple iterations and continues until a
solution is found with no more outages.

This fast dynamics model does not attempt to
capture the intricate details of particular blackouts, which
may have a large variety of complicated interacting
processes also involving, for example, protection
systems, dynamics and human factors.  However, the fast
dynamics model does represent cascading overloads and
outages that are consistent with some basic network and
operational constraints.

Calculations with the fast dynamics model are
carried out by slowly increasing the average load demands
over 105 iterations.  If one regards each model run as
occurring at successive peak daily loads (when blackouts
are most likely), then this corresponds to an average load
demand increasing slowly in a power network under fixed
conditions over a period of 105 days.  This is not because
we try to simulate a real power transmission network, as
this time scale is too long for the power system
remaining under the same rules and conditions. Rather it
is done in order to accumulate the necessary statistics to
calculate the PDFs and other statistical measures needed
to understand the system and ultimately do risk analysis.
This emphasizes the problem of working with real data
[5,7], which has only been available for a period of time
more than an order of magnitude shorter than the time
used in these calculations.

3. Critical points of the OPA fast dynamics
blackout model

This section studies the behavior of blackouts in the
fast dynamics model of section 2 as the average load
demand is increased.  As the power demand increases, we
found several transition points. Some of these transition
points have the characteristic properties of a critical
transition.  That is, when the load power demand is
close to a critical value, the probability distribution
function (PDF) of the blackout size has an algebraic tail
and at the critical loading the risk for blackouts increases
sharply.  In particular, there is a sudden change in the
rate of change of load shed as a function of the power
demand.  These transitions are caused by limits in the



power system and they can be grouped in two types of
limiting conditions:  
1. Limits set by the available power generation.
2. Limits set by the transmission capacity of the grid.  

An example with two of these limits is shown in
Fig. 3. For a tree network with 382 nodes (12 generators
and 370 loads), we increase power demand by increasing
all loads at the same rate. The load demand in this
example is deterministic and there is no random
fluctuation in the load demands.  As we reach a power
demand of 31480, the total generator capacity, load
power shedding starts. As the demand continues to
increase, all power above 31480 is shed.  When the
demand reaches 45725, the power flow in some lines
reaches the line power flow limit and some line outages
are produced. This causes a further increase in the load
power shed.
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Fig. 3. Normalized power shed and
number of outaged lines for a tree
network with 382 nodes as a function of
power demand.

Why is there a second transition after the total power
served is kept constant that is therefore independent of
the level of demand?  The reason is that the individual
loads increase and the power shed is not uniform over all
loads. Therefore, even if the total power served is
constant, the power delivered to some of the loads is
increased as the total demand increases and that leads to
overloading lines and possible line outages.  The second
transition point occurs at the same value of the power
demand even in the absence of the first critical point,
because it depends on the power of individual loads and
the maximum power flow that the lines connecting them

can carry.  These results come from studying a sequence
of cases under the same conditions but without random
load fluctuations.  The important point is that the first
transition point is a function of the total power demand,
while the second depends on the local value of the loads
near the lines that are closer to overload.

Some of these transition points have the
characteristic properties of a critical transition. For the
calculation shown in Fig. 3, we have used the power
demand as control parameter and we have done a scan
starting with all load nodes having the same power loads
and not allowing for fluctuations.  Clearly the power
generation limit (the first inflection point in the load-
shed curve in Fig. 3) behaves as a second order transition
point, characterized by a continuous function with
discontinuous derivative. The critical point in this case is
given by the generator power margin reaching zero, that
is DP P P

i G
i Demand∫ Â - =

Œ
0.  The load shed is a

continuous function of the load power demand, but its
derivative with respect to the load power demand is
discontinuous at the transition point.

In the proximity of the generator critical point, the
PDF of the normalized load shed has an algebraic tail. To
calculate the PDF, we have to introduce noise into the
system and this is done by introducing random
fluctuations of the load power demands. The load
fluctuations are controlled by the parameter g described in

Appendix I.  For a given value of g, the average

fluctuation induced in the total power demand is

g -( ) ( )1 2 NL . Therefore, we can also use the

parameter g as a control parameter to scan over the

critical point.  
For the sequence of results in Fig. 4, the first critical
point is reached with g = 1.35. This corresponds to an

averaged fluctuation in the power demand of 10%. As g
increases, more of the fluctuations in power demand
reach the critical point, and the PDF of the normalized
load shed develops an algebraic tail with decay index
close to –1. Above the critical point, the PDF changes
to an exponential tail.  This is shown in Fig. 4 for a 94-
node tree network. We have chosen network conditions
with the generator power limit well below the limits set
by the transmission lines in order to avoid interacting
with the line limits critical point.  In this case, we have
given an averaged value to the generation margin
capability of 5% and varied the maximum daily
oscillation of the loads.  Naturally, in this situation there
are no outages in the system and power shedding is
simply due to a supply shortage.

The second transition point in Fig. 3 is associated with
line limits and is more difficult to characterize.  To



identify this transition point, it is useful to define the
fraction of overload for a given line as

M
F

Fij
ij

ij

= max (3)
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Fig. 4. PDF of the normalized load shed
for a tree 94-node tree network for
different levels of the load fluctuations.

We can then calculate M M
ij

ijmax max∫ .  The second

transition point in Fig. 3 is given by M max = 1.  The
properties of this type of transition point depend on the
value of the parameter p2, the probability that an
overloaded line outages. Of course, if p 2 = 0, there are
no line outages and this transition point has similar
properties as the generator limit, and looks like a second
order transition. However, for p 2 = 1, all overload lines
outage.  This is the value of p2 used in the calculation
shown in Fig. 3 and the transition point has some of the
features of a first order transition characterized by a
discontinuous jump in the function. In Fig. 5, we show
examples of transitions for these different values of the
relevant parameters. For values of p2 between 0 and 1,
we have intermediate situations that are more difficult to
characterize. Only for p 2 = 0 does the PDF of the load
shed near the critical point have a clear algebraic tail.

The full classification of the properties of these
transition points for all values of the parameters is
beyond the scope of this paper.

In trying to describe the realistic dynamics of
power transmission systems, it is found that the best
choice of parameters is when both critical points are
close to each other.  In this case, we can combine the

existence of power tail in the PDF of the load shed with
the presence of outages.
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Fig. 5. Normalized power shed for a tree
network with 94 nodes as a function of
load power demand.  Four different
scenarios are included.

4. Self-organization dynamics

To transform the model described in Section 2 into a
self-organized dynamical system we must include some
of the opposing forces that act on the power
transmission system. One example of these opposing
forces is the growth of the demand and the system
response through upgrading the system.  These opposing
mechanisms were incorporated in the model in Refs. [1,
2] and a short description of this model is given in the
Appendix I.  In this model, all loads are multiplied by a
fixed constant g > 1 at the start of the day. This causes

an exponential increase in the average load demand.  The
generator capabilities are incremented in the same way;
therefore, the generator limits are never reached in this
model. The response mechanism was triggered by the
blackout outages.  When there is a blackout, the overload
lines have their limits incremented by multiplying them
by m > 1.  The combined effect of these slow dynamics

is that the system self-organizes close to the critical
point of the outages (second point in the example of
Fig. 3).

In order to have a self-organization mechanism that
includes the growth of maximum generator power, we
have used tested several algorithms. One of the simplest
forms incorporating such a mechanism is based on the
increase of maximum generator power as a response to



the load demand.  We have limited the model to increases
in maximum generator power at the same nodes that
initially had generators.  In doing so, we have
implemented the following rules:
a. The increase in power is quantized.  This may reflect

the upgrade of a power plant or adding generators.
We have tried two possibilities. The increase is
taken to be either a fixed quantity or a fixed ratio to
the total power. The second approach seems to work
better, in the sense of convergence to a steady state.
Therefore, we introduce the quantity

DP P Na T G∫ ( )k (4)

Here, PT is the total power demand, NG is the
number of generator nodes, and k is a parameter that

we have taken to be a few percent.  

b. To be able to increase the maximum power in node
j, the sum of the power flow limits of the lines
connected to j should be 20% larger than the
existing generating power plus the addition at node
j.  The 20% value is an arbitrary quantity that
provides a safety margin so that the line ratings are
coordinated with the generator capabilities.

c. A second condition to be verified before any
maximum generator power increase is that the mean
generator power margin has reached a threshold
value. That is, we define the mean generator power
margin at a time t as:

DP

P

P P e

P e

j
j G

t

t=
-

Œ
Â 0

0

l

l (5)

where P0 is the initial power load demand.

d. Once condition c) is verified, we choose a node at
random to test condition b). If the chosen node
verifies condition b), we increase its power by the
amount given by Eq. (4). If condition b is not
verified, we choose another node at random and
iterate.  After power has been added to a node, we
recalculate the mean generator power margin,
Eq. (5), and continue the process till DP/P is above
the prescribed quantity.  This is motivated by the
fact that utilities are, in general, likely to build a
power plant where the transmission capacity already
exists.

This algorithm seems to provide the self-organization
process that we were looking for in the following sense.
The maximum generator power stays close to and below
the critical point, which results in PDFs with power law
tails.  The new measure of criticality is the mean

generator power margin and this quantity converges to a
steady state in a reasonable amount of time.  Its mean
values is approximately

D DP

P

P

P Nthreshold G

= - k
2

. (6)

This result is reasonable because only one node gets an
increase at a given time.  
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Fig. 6.  Time evolution of DP/P for a case
with k = 0.04, threshold DP/P = 0.3.

It is also possible to introduce a time delay between
the detection of a limit in the generation margin and the
increase of the maximum generator power. This delay
would represent the construction time. However, the
result is the same as increasing the value of k in Eq. (4),

which can also give an alternative interpretation for k.

In Fig. 6, we have plotted an example of time
evolution of the generator margin DP/P for a case with
k  = 0.04, threshold DP/P = 0.3, and 10 generator

nodes. Increasing k gives larger oscillations. The results,

characterized by the PDF of the normalized power shed,
do not seem to depend on the particular value of k. They

do depend on the value taken for the threshold of DP/P.
If the latter is not the critical value, we do not get critical
behavior, as expected.  Note that the critical value for
DP/P is a function of the maximum oscillation of the
power load as described in Section 3.

Once we have determined from the load scans of
Section 3 what the critical points are, we can explore the
dynamics of self-organization. In combining the two
dynamical loops, the real self-organized critical point that
the system is operating near is the point where the two
types of critical points are close to each other. Therefore,



both the line improvement and the generator upgrade in
the dynamics of the system are needed in the dynamical
evolution. Once we have both of them together, the
PDFs of the power shed have well-developed power tails.
This is shown in Fig. 7, where the PDF of the load shed
normalized to the total power demand for three different
tree configurations has been plotted.
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Fig. 7.  PDF of the load shed normalized
to the total power demand for four
different tree networks.

The power-law-scaling region increases with the
number of nodes in the network. The power decay index
is practically the same for the four networks and close to
–1.0.  The particular values of the decay index for each
network are given in Table I.
The range of the power tail region is defined as the ratio
of the maximum and minimum load shed described by
the power law.  From the values obtained for the four
networks listed in Table I, we can see that the range
scales with the network size.

Table I

Number
of nodes

PDF
decay index

Range of
power tail

46 -1.13 7
94 -1.16 17

190 -1.16 36
382 -1.21 62

The PDFs plotted in Fig. 7 are very similar to the
PDFs of the normalized load shed obtained by direct
power demand scan near the critical points with an
important difference that they are now self organized.
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The form of these PDFs, or at least their power tail,
seems to have a universal character.  Therefore, we can
try to compare the PDF of the normalized load shed
obtained for the largest network with the PDF of the
blackouts obtained in the analysis of the data from the
last 15 years in the U.S. We have plotted the latter
normalizing the events to the largest value over this
period of time.

The level of agreement between the power tails of
these two PDFs is remarkable. This seems to indicate
that the dynamical model for the blackout has captured
some of the main features of the data.

5. Discussion and conclusions

The opposing forces organizing the system,
which in this paper are crudely represented by load
demand increases and upgrades to network and generation
capacity, may also be seen as the outcomes of design and
operational procedures that trade off system security (risk
of blackout) and maximizing the energy or peak power
delivered.  It is not clear how the self-organization we
model is divided between design and planning procedures
and operational procedures.  In power system design and
planning, design rules can incorporate previous
experience of blackouts or designs may be tested by
extensive simulations.  In operations, real blackouts do
of course occur and have significant impacts on



operation, upgrades and repair, but there are also
engineering responses to simulated events.  A key
question addressed but not fully answered in this paper,
assumes from the power tails observed in the NERC data
that North American power systems have been operated
near a critical point and asks why or how this arises.
Operational security criteria such as the n-1 criterion do
influence the power system loading and planning, as well
as the probability of cascading outages, and it would be
interesting to determine the extent to which application
of these criteria would lead to operation of the system
near critical loading at peak load.  That is, do specific
security criteria contribute to self-organization to
criticality?   A fundamental understanding of the relation
between security criteria and the risk or distribution of
blackouts is particularly needed as the tested practices of
the past are changed to accommodate deregulated power
systems.

To understand the complex dynamics of series
of blackouts in power systems, we proposed the OPA
model. The OPA model incorporated a simple level of
self-organization by including the growth of the load
power demand and the engineering response to system
failures. This model shows a variety of possible
transition points, some linked to line outages in the
system and others linked to the limits in the generation
capacity. We have found that critical behavior emerges
when these transition points correspond to similar power
demand levels. Close to this critical point, the system
reaches a maximum capacity for power transmission and
the PDF of the blackout sizes have a power tail.

For the system to self-organize near to this
critical point, we have to model the dynamics of the
upgrading of the generator capacity as a response to the
increased load demand. This leads to a double response
loop in the model: 1) line upgrades and 2) generator
upgrades.  Under these conditions, the model has the
characteristic properties of a system governed by self-
organized criticality. The PDF of the blackouts size has
the same power dependence that have been found from
the analysis of NERC data for the North American power
grid over a period of 15 years.

In these studies, we have limited the application
of the model to idealized power grid systems with tree
structure.  Applications to more realistic power networks
are under way.
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Appendix I: Slow dynamics of load increase
and network upgrade in OPA model.

The slow dynamics proposed in [1, 2] model the
growth of the demand and response to the blackout by
upgrades in the grid transmission capability. The slow
dynamics is carried out by a simple set of rules. At the
beginning of the day t, we apply the following rules:
1. Growth of the power demand.  All loads are

multiplied by a fixed parameter l that represents the

daily rate of increase in electricity demand. On the
bases of the past electricity consumption, we had
estimated that l = 1.00005. This value corresponds

to a yearly rate of 1.8%.

P t P t i Li i( ) = -( ) 'l 1 for (AI-1)

Equally, the maximum generator power is increased
at the same rate

P t P t i Gi i
max max( ) = -( ) 'l 1 for (AI-2)

2. Power transmission grid improvement.  We assume
a gradual improvement in the transmission capacity
of the grid in response to the outages and blackouts.
This improvement is implemented through an
increase of Fij

max  for the lines that have overload

during a blackout. That is.

F t F tij ij
max max( ) = -( )m 1 (AI-3)

if the line ij overloads during a blackout.  We take m
to be a constant and this parameter is the main
control parameter in this system

3. Daily power fluctuations.  To represent the daily
local fluctuations on power demand, all power loads
are multiplied by a random number r, such that
1 g g£ £r .  We generally choose g in the range 1

to 1.4.  We also assign a probability for a random
outage of a line. We represent a line outage by
multiplying its impedance by a large number k1 and

dividing its corresponding Fij
max  by another large



number k2. In the present calculations, these

numbers are of the order of 1000.
After applying these three rules to the network

parameters, we look for a solution of the power flow
problem using linear programming as described in
section 2.
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