
1

Introduction to Git

Kate Hedstrom
IMS, UAF

Linus Torvalds

4

Version Control Software
•  System for managing source files

–  For groups of people working on the same
code

–  When you need to get back last week’s
version

•  In the past, I have used RCS, CVS, and SVN,
each better than the last

•  Git was designed for managing the Linux
kernel and therefore has these goals:
–  Fast
–  Support many, many developers
–  Distributed
–  Open Source

Distributed?
•  Every checkout gives you a copy of

the whole repository
•  Can compare branches, history

while offline
•  Can check in your changes to your

local repository
•  Sharing updates with others is

optional

6

Getting Started With Git

•  Set up who you are:
% git config –-global user.name “you”

% git config –-global user.email \
“you@home”

•  Get colorful (if you want):
% git config –-global color.ui “auto”

•  Without “--global” applies to current

directory only

Start a New Repository
•  In the directory with your code:

– git config --list
– git init
– git add . # all files in current dir
– git commit -m “initial message”

•  You now have a .git directory with a
database of your files

•  Revision numbers are SHA1 numbers,
same for the same content

From a Repository

•  From a git url:
– git clone <url>

•  Could be another local directory:
– git clone dir1 dir2

•  From a svn url:
– git svn clone <url>

•  Default is to suck down the entire
history into the database

9

Main git commands
•  add – add sources to next commit
•  commit – check in changes locally
•  checkout – change branches
•  push – send your changes to a remote

site
•  pull/fetch – get changes from remote site
•  Status – find out which files would

change on commit
•  diff – find out what's different between

index and current sandbox
•  help

10

Example
•  Change/add some local files

– git add newfile
– git commit

•  “git add” adds files to the commit
list (index) for the next commit

•  Can selectively add only some of
your changes to make logical
commits, otherwise:
– git commit -a #commits all changes

% ls /my/src/cpp
cpp.h cpp.c Makefile ...
% cd /my/src/cpp
% git init
Tell git which files to track
% git add .
% git commit
[make some changes]
% git commit -a

Git example

Comments on Previous

•  Svn takes more fuss to get going
(not shown)

•  New files have to be explicitly
added

•  Any directory can become a git
repository

•  Better for text files than for binary

xkcd Cartoon

 Message advice
Short (50 chars or less) summary of changes

More detailed explanatory text, if necessary.
Wrap it to about 72 characters or so. The
blank line separating the summary from the
body is needed; tools like rebase can get
Confused if you run the two together.

Further paragraphs come after blank lines.

 - Bullet points are okay, too

 - Typically a hyphen or asterisk is used for
the bullet, preceded by a single space, with
blank lines in between, but conventions vary.

Seeing History

•  git log
•  gitk (gui)
•  git diff HEAD^
•  git log HEAD^^^ or HEAD~3
•  git diff b324a87 (SHA1)
•  git diff --cached (between index

and HEAD)

Index?
•  The index is a store of what would be

checked in on “commit”
•  Contains files that merged cleanly

and those put in with “git add”
•  “git diff” shows difference between

index and current sandbox
•  “git diff HEAD” shows difference

between last checked in and sandbox

Index as Staging Area

HEAD

18

on pacman
% git clone <URL> roms
% cd roms
[make some changes]
% git commit -a
% git push origin master

on this Mac
% git clone …
% cd roms
% git pull …
% make

Coordination

•  Coordinate code on multiple systems
•  Coordinate between multiple

programmers
•  Can be single version or multiple

branches

Fetch

•  Pull is a fetch and a merge
•  I use push/pull between my own

repositories
•  Fetch then merge is better when

working with others.

20

Updates
•  An update when two people have

changed things can involve:
– No conflict because changes are in

different places
– Conflict because two different changes to

the same region in the code
•  If there is a conflict this must be

resolved by human intervention
•  One option is to reset (undo the

merge)

21

Other git commands
•  delete – no longer need a file
•  move – rename a file or move to new

location
•  merge – merge changes from another

branch
•  cherry-pick – pick one update from

some other branch
•  remote – register a remote repo
•  rebase – reorder the history in your

local repo
•  stash – add to a stack of rough drafts

Revision Numbers

•  git uses a database to store the files
•  Each revision has a unique number

to describe that snapshot – it’s a
SHA1 with 40 characters
– SHA1 for each file
– SHA1 for a tree of files

•  Can see the numbers with “git log”
•  Every commit creates a new

revision number

What about Branches?
•  See the branches:

– git branch

•  See all the branches:
– git branch -a

•  Make a new branch:
– git branch <new> # copy of current

•  Switch to that new branch:
– git checkout <new>

24

•  A branch starts as a duplicate
•  Delete branches after merge and

testing
•  Rebase can be used to put change 7

after 6

Branches

1 2

2

3

4

5

5 6

8

Time

Add Change

Change

Merge

Change

Merge

Make foo
branch

Make fie
branch

7
Add

25

Conflicts
•  If there is a conflict, git will let

you know (check git status)
•  The merge failures will look

something like:
 Clean code before
 <<<<<<< HEAD:<file>
 My code
 =======
 New code
 >>>>>>> branch:<file>
 Clean code after

26

•  Once you’ve cleaned up the mess, tell git

you’re ready:
 git add filename

•  Git puts file into the index
•  You can instead toss the changes with:
 git checkout HEAD filename
•  Once all the files are clear (check with “git

status”) commit the index to the repo:

More Conflicts

git commit

Other
•  Remote repos are seen as a kind of

branch (tracking branch)
 git fetch pete # get pete only

 git remote update # update all

•  Always, always check in changes before
a pull/fetch/merge – different from svn.

•  Check in changes before changing
branches – unless you want the change
to be on the new branch

Git Svn Handshaking

•  Not quite as robust as git alone
•  Based on Perl scripts in svn

distribution (not always installed)
– git svn clone <url>
– git svn clone -r 1043 <url>
– git svn rebase # fetch from upstream
– git svn dcommit # commit to upstream
– git svn log

Bare Repositories

•  Full database, but no working files

•  Create with “git clone --bare url”

•  For repositories that get pushed
to (web servers, for example)

My Branches

•  Copy of the svn code (public)

•  Fish model branch

•  Global model branch (with tripole
grid)

•  Any other thing I'm working on
temporarily

My Insane Repo Collection
•  Bare repository on Linux workstation
•  Public branch on github
•  Cloned to each supercomputer via ssh
•  Cloned to colleague’s computer via ssh
•  git-svn working best on Mac
•  Mac has my git-svn repo, plus clone of

“origin” repo, also NCAR CESM-ROMS
and Hernan’s trunk via git-svn

My Insane Repo Collection

Workflows
•  Just a few people with private

(bare) repo
– Push/fetch at will, communicate however

•  Huge groups (like Linux)
– Can have dictator in charge of master

branch
– Tree structure with lieutenants overseeing

components
•  Keep main branch clean and test

on temporary topic branches

Random other things

•  Tell git to stop tracking file
– git rm --cached <file>

•  Launch gui editor
– git difftool
– git mergetool

•  Set some aliases
– git config --global alias.co checkout
– git config --global alias.br branch

Git Drawbacks?

•  Best with one project per
repository (roms, plotting, matlab
tools all separate entities)

•  Yet another tool to learn
•  Git-svn doesn’t handle svn

Externals
•  More rope to hang yourself…

36

Learn more

•  Online at

http://git-scm.com/documentation –
man pages, a cheat sheet, even a free
book

•  git help
•  If you like these ideas, but prefer a

Python tool, check out Mercurial at:
http://mercurial.selenic.com/

Work Along?

•  git config --global user.name “me”

•  git config --global user.email “me@work”

•  git config --global color.ui “auto”

•  git config --list

•  Find some code to track... If desperate:

–  http://www.people.arsc.edu/~kate/simple_codes/

In Code Directory

•  git init

•  git add . # or git add *.f

•  git commit # -m “message”

•  make a change....

•  git status

•  git commit -a

Ignoring Files

•  Edit .gitignore

•  git add .gitignore

•  git diff HEAD

•  git commit

•  gitk

•  Can look at .git/config

Branches
•  git branch hotter
•  git checkout hotter
•  Edit some file
•  git commit -a
•  git checkout master
•  Edit same file
•  git commit -a
•  git merge hotter

Conflict? then Clone

•  Fix conflict

•  git add file

•  git commit

•  git branch -d hotter # delete branch

Remotes
•  cd ..
•  git clone dir1 dir2
•  In dir2:

–  Look at .git/config
–  git branch –a

•  Make some changes to dir1 and check
them in

•  Go to dir2:
–  git fetch
–  git merge origin/master

Remotes

•  Changing in dir2 and doing ‘git push’
gives error because dir1 is not a bare
repo

•  Need to go to dir1 and make dir2 a
remote:
–  git remote add dir2 ../dir2
–  git remote update (or git fetch)
–  git diff dir2/master
–  git merge dir2/master

