
1

Computer Architecture and
Performance

David Newman
(from Tom Logan Slides from Ed

Kornkven)

Friday, October 9, 15

2

Outline
• Performance Architectures

– Superscalar
– Pipelined
– Parallel
– Vector

• Memory Hierarchy

Friday, October 9, 15

3

Scalar Operations

For the statement: Z = a*b + c*d
1. Load a into register R0
2. Load b into R1
3. Multiply R2 = R0 * R1
4. Load c into R3
5. Load d into R4
6. Multiply R5 = R3 * R4
7. Add R6 = R2 + R5
8. Store R6 into z

• Does Order Matter?
*slide from SIPE http://www.oscer.ou.edu/education.php

Friday, October 9, 15

http://www.oscer.ou.edu/education.php
http://www.oscer.ou.edu/education.php

4

Basic Computer Control:
The Fetch-Execute Cycle

Do Forever:
– Fetch instruction from memory
– Decode instruction; Fetch registers
– Compute addresses; Execute instruction
– Read/Write memory; Update program counter
– Update registers

• This is the behavior of a basic CPU
• How can we speed this up?

Friday, October 9, 15

5

Computer Speedup Idea #1

Do Forever:
– Fetch instruction from memory
– Decode instruction; Fetch registers
– Compute addresses; Execute instruction
– Read/Write memory; Update program counter
– Update registers

Pipelining:
 Do all these steps in parallel

Friday, October 9, 15

6

Computer Speedup Idea #2

Do Forever:
– Fetch instruction from memory
– Decode instruction; Fetch registers
– Compute addresses; Execute instruction
– Read/Write memory; Update program counter
– Update registers

Superscalar:
 Do > 1 instruction in parallel

}{

Friday, October 9, 15

7

Computer Speedup Idea #3

Do Forever:
– Fetch instruction from memory Vector instruction
– Decode instruction; Fetch registers Vector registers
– Compute addresses; Execute instruction
– Read/Write memory; Update program counter Vector registers
– Update registers Vector registers

Vector:
Operate on many data per instruction

Friday, October 9, 15

8

Computer Speedup Idea #4

Do Forever:
– Fetch instruction from memory
– Decode instruction; Fetch registers
– Compute addresses; Execute instruction
– Read/Write memory; Update program counter
– Update registers

Parallel:
 Use many processors

One
PE

Friday, October 9, 15

9

Superscalar Architectures

• Superscalar
– Issues more than one instruction at a time
– Must have multiple functional units to do the

work
– E.g., an integer unit and a floating point unit

which can execute in parallel
• Common in modern microprocessors

Friday, October 9, 15

10

Superscalar Operations
For the statement: Z = a*b + c*d
1. Load a into R0 AND
 load b into R1
2. Multiply R2 = R0 * R1 AND
 load c into R3 AND
 load d into R4
3. Multiply R5 = R3 * R4
4. Add R6 = R2 + R5
5. Store R6 into z

*slide from SIPE http://www.oscer.ou.edu/education.php

Friday, October 9, 15

http://www.oscer.ou.edu/education.php
http://www.oscer.ou.edu/education.php

11

Pipelined Architectures

• Pipelining
– Operations are divided into stages
– When an operand finishes a stage, that

stage is available for another operand
– An N-stage pipeline has speedup of N minus

pipeline overhead
• Depth of pipeline has practical limits

• Common in modern microprocessors

Friday, October 9, 15

12

Fast and Slow Operations
– Fast: sum, add, subtract, multiply
– Medium: divide, mod (i.e., remainder)
– Slow: transcendental functions (sqrt, sin, exp)
– Incredibly slow: power xy for real x and y

• On most platforms, divide, mod and
transcendental functions are not pipelined, so
a code will run faster if most of it is just adds,
subtracts and multiplies.

• For example, solving an N x N system of linear
equations by LU decomposition uses on the
order of N3 additions and multiplications, but
only on the order of N divisions.

*slide from SIPE http://www.oscer.ou.edu/education.php

Friday, October 9, 15

http://www.oscer.ou.edu/education.php
http://www.oscer.ou.edu/education.php

13

What Can Prevent Pipelining?

• Certain events make it very hard
(maybe even impossible) for compilers
to pipeline a loop, such as:
– array elements accessed in random order
– loop body too complicated
– if statements inside the loop (on some platforms)
– premature loop exits
– function/subroutine calls
– I/O

*slide from SIPE http://www.oscer.ou.edu/education.php

Friday, October 9, 15

http://www.oscer.ou.edu/education.php
http://www.oscer.ou.edu/education.php

14

Vector Architectures

• Vector Processing
– A datatype, instructions and hardware for

operating on vectors -- 1-D arrays of data
– Deeply pipelined vector processing units
– Vector registers
– Vector versions of LOAD, STORE and

arithmetic operations

Friday, October 9, 15

15

Vector Architectures (cont.)

• Furthermore, vector supercomputers
also
– Have a specialized memory system for very high

bandwidth
– A large number of registers
– Many opportunities for parallelism

• Pipelined scalar and vector units
• Multiple pipelines and functional units
• Overlapping vector and scalar operations
• Multiple CPUs

Friday, October 9, 15

16

Parallel Architectures
• Multiple processing elements (PEs) with varying

degrees of memory sharing between PEs
(Beware of terminology!)
– Shared memory - all processors can access all memory

locations in approximately the same time (aka
multiprocessors or symmetric multiprocessors)

– Nonshared (distributed) memory - each PE has its “own”
memory which it can access quickly; memory of other PEs is
accessed over interconnect (aka multicomputers or MPPs)

– Combinations of these -- Nearby local (fast but small)
memory plus larger remote (e.g., on other PEs) memory
(longer latency but larger) (aka NUMA machines)

• See http://lse.sourceforge.net/numa/faq/

Friday, October 9, 15

17

Memory Hierarchy

• The most significant challenge in
programming parallel machines is
effectively managing the memory
hierarchy
– The components of the storage system
– Closer to CPU ⇒ smaller, faster
– Farther from CPU ⇒ larger, slower

Friday, October 9, 15

18

Memory Hierarchy (cont.)

Memory Hierarchy Stages
– Registers

• On-CPU; directly referenced by instruction set; virtually
no access delay (latency)

– Cache
• Small, fast memory close to CPU; holds most recently

accessed code or data
– Main memory

• Local memory - fast access by owning CPU
• Node memory - reasonably fast access by CPUs of

owning node (grouping of CPUs)
• Global memory - accessible by any CPU

– Disk - persistent storage

Friday, October 9, 15

19

Memory Hierarchy (cont.)

Level Latency in
CPU cycles

Capacity in
K Bytes

Registers 1 101

L1 Cache A few 102

L2 Cache More than L1 103

L3 Cache More than L2 104

Main memory 102 107

Disk 105 109 +

Friday, October 9, 15

20

Example: Some Microprocessors
 Pentium 4

3.2
 Pentium 4 3.2 EE

(2MB L3)
 Athlon XP

3200+
 Athlon 64

FX-51
L1 latency, cycles 2 2 3 3

L2 latency, cycles 19 19 20 13

L3 latency, cycles 43

Memory latency,
cycles

204 206 180 125

L1 latency, ns 0.63 0.63 1.36 1.36

L2 latency, ns 5.94 5.94 9.09 5.90

L3 latency, ns 13.44

Memory latency,
ns

63.75 64.38 81.82 56.81

Friday, October 9, 15

21

Impact of Memory Hierarchy

• Suppose we can use the L1 cache 90%
of the time on the Pentium 4

• How much of a speedup do we get
compared to just using main memory?
(Using Amdahl’s Law)
speedup = 1 / (0.10 + (0.90/L1 cache speedup))
From the previous slide, L1 cache speedup = 204/2

= 102
So speedup = 1 / (0.10 + (0.90/102)) = 9.2

Friday, October 9, 15

22

Example: Power4

Level Latency in
CPU cycles

Capacity in
Bytes

Registers 1 ≈1 KB

L1 Cache 4 128 KB

L2 Cache 12-20 1.45 MB

L3 Cache More than L2 32 MB

Main memory 102 16 GB

Disk 105 1+ TB

Friday, October 9, 15

23

Memory Hierarchy (cont.)

Friday, October 9, 15

24

Memory Hierarchy (cont.)

Friday, October 9, 15

25

Memory Management

• Three main focal points for
programmer

1. Cache
2. Main memory
3. Interconnection network

Friday, October 9, 15

26

Cache Management

• Be aware of locality
– Spatial
– Temporal

• Most recently used data or
instructions will be in the cache --
reuse them

Friday, October 9, 15

27

Main Memory Management

• Understand memory layout for
your language
– C: row major
– Fortran: column major

• Special case to watch for:
– Accessing memory by 2k strides
– E.g. loop nests that access rows/columns

Friday, October 9, 15

28

Network Management

• Minimize remote data references
– Arrange data on processors carefully
– Perhaps keep a local copy of some remote

data -- e.g. halo
– Use non-blocking messaging
– Many other techniques -- wait for MPI

classes

Friday, October 9, 15

