
Supercomputing in
Plain English

Part IV:
Henry Neeman, Director

OU Supercomputing Center for Education & Research
University of Oklahoma

Wednesday September 19 2007

Supercomputing in Plain English: Stupid Compiler Tricks
Wednesday September 19 2007 2

Outline
! Dependency Analysis

! What is Dependency Analysis?
! Control Dependencies
! Data Dependencies

! Stupid Compiler Tricks
! Tricks the Compiler Plays

Supercomputing in Plain English: Stupid Compiler Tricks
Wednesday September 19 2007 3

Borrowed Slides!!!
! This entire section of slides was taken from
 http://www.oscer.ou.edu/
! They have a course much like the one offered here at ARSC
! I particularly liked their treatment of dependencies and

stupid compiler tricks
! This is an abridged version of their talk
 http://www.oscer.ou.edu/Workshops/Compilers/sipe_compilers_20070919.ppt

http://www.oscer.ou.edu/
http://www.oscer.ou.edu/
http://www.oscer.ou.edu/Workshops/Compilers/sipe_compilers_20070919.ppt
http://www.oscer.ou.edu/Workshops/Compilers/sipe_compilers_20070919.ppt

Dependency Analysis

Supercomputing in Plain English: Stupid Compiler Tricks
Wednesday September 19 2007 5

What Is Dependency Analysis?
Dependency analysis describes of how different parts of a

program affect one another, and how various parts require
other parts in order to operate correctly.

A control dependency governs how different sequences of
instructions affect each other.

A data dependency governs how different pieces of data affect
each other.

Much of this discussion is from references [1] and [5].

Supercomputing in Plain English: Stupid Compiler Tricks
Wednesday September 19 2007 6

Control Dependencies
Every program has a well-defined flow of control that moves

from instruction to instruction to instruction.
This flow can be affected by several kinds of operations:

! Loops
! Branches (if, select case/switch)
! Function/subroutine calls
! I/O (typically implemented as calls)

Dependencies affect parallelization!

Supercomputing in Plain English: Stupid Compiler Tricks
Wednesday September 19 2007 7

Branch Dependency
y = 7
IF (x /= 0) THEN
 y = 1.0 / x
END IF
Note that (x /= 0) means “x not equal to zero.”
The value of y depends on what the condition (x /= 0)

evaluates to:
! If the condition (x /= 0) evaluates to .TRUE., then y

is set to 1.0 / x. (1 divided by x).
! Otherwise, y remains 7.

Supercomputing in Plain English: Stupid Compiler Tricks
Wednesday September 19 2007 8

Loop Carried Dependency
DO i = 2, length
 a(i) = a(i-1) + b(i)
END DO
Here, each iteration of the loop depends on the previous:

iteration i=3 depends on iteration i=2,
iteration i=4 depends on iteration i=3,
iteration i=5 depends on iteration i=4, etc.

This is sometimes called a loop carried dependency.
There is no way to execute iteration i until after iteration i-1 has

completed, so this loop can’t be parallelized.

Supercomputing in Plain English: Stupid Compiler Tricks
Wednesday September 19 2007 9

Why Do We Care?
Loops are the favorite control structures of High Performance

Computing, because compilers know how to optimize their
performance using instruction-level parallelism:
superscalar, pipelining and vectorization can give excellent
speedup.

Loop carried dependencies affect whether a loop can be
parallelized, and how much.

Supercomputing in Plain English: Stupid Compiler Tricks
Wednesday September 19 2007 10

Call Dependency Example
x = 5
y = myfunction(7)
z = 22
The flow of the program is interrupted by the call to
myfunction, which takes the execution to somewhere
else in the program.

It’s similar to a branch dependency.

Supercomputing in Plain English: Stupid Compiler Tricks
Wednesday September 19 2007 11

I/O Dependency
X = a + b
PRINT *, x
Y = c + d

Typically, I/O is implemented by hidden subroutine calls, so
we can think of this as equivalent to a call dependency.

Supercomputing in Plain English: Stupid Compiler Tricks
Wednesday September 19 2007 12

Reductions Aren’t Dependencies
array_sum = 0
DO i = 1, length
 array_sum = array_sum + array(i)
END DO
A reduction is an operation that converts an array to a scalar.
Other kinds of reductions: product, .AND., .OR., minimum,

maximum, index of minimum, index of maximum, number of
occurrences of a particular value, etc.

Reductions are so common that hardware and compilers are
optimized to handle them.

Also, they aren’t really dependencies, because the order in
which the individual operations are performed doesn’t matter.

Supercomputing in Plain English: Stupid Compiler Tricks
Wednesday September 19 2007 13

Data Dependencies
“A data dependence occurs when an instruction is dependent

on data from a previous instruction and therefore cannot be
moved before the earlier instruction [or executed in
parallel].” [6]

a = x + y + cos(z);
b = a * c;
The value of b depends on the value of a, so these two

statements must be executed in order.

Supercomputing in Plain English: Stupid Compiler Tricks
Wednesday September 19 2007 14

Output Dependencies
x = a / b;
y = x + 2;
x = d – e;

Notice that x is assigned two different values, but
only one of them is retained after these statements
are done executing. In this context, the final value
of x is the “output.”

Again, we are forced to execute in order.

Supercomputing in Plain English: Stupid Compiler Tricks
Wednesday September 19 2007 15

Why Does Order Matter?
! Dependencies can affect whether we can execute a

particular part of the program in parallel.
! If we cannot execute that part of the program in parallel,

then it’ll be SLOW.

Supercomputing in Plain English: Stupid Compiler Tricks
Wednesday September 19 2007 16

Loop Dependency Example
if ((dst == src1) && (dst == src2)) {
 for (index = 1; index < length; index++) {
 dst[index] = dst[index-1] + dst[index];
 }
}
else if (dst == src1) {
 for (index = 1; index < length; index++) {
 dst[index] = dst[index-1] + src2[index];
 }
}
else if (dst == src2) {
 for (index = 1; index < length; index++) {
 dst[index] = src1[index-1] + dst[index];
 }
}
else if (src1 == src2) {
 for (index = 1; index < length; index++) {
 dst[index] = src1[index-1] + src1[index];
 }
}
else {
 for (index = 1; index < length; index++) {
 dst[index] = src1[index-1] + src2[index];
 }
}

The various versions of the loop either:
! do have loop carried dependencies, or
! don’t have loop carried dependencies.

Stupid Compiler
Tricks

Supercomputing in Plain English: Stupid Compiler Tricks
Wednesday September 19 2007 18

Stupid Compiler Tricks
! Tricks Compilers Play

! Scalar Optimizations
! Loop Optimizations
! Inlining

Supercomputing in Plain English: Stupid Compiler Tricks
Wednesday September 19 2007 19

Scalar Optimizations
! Copy Propagation
! Constant Folding
! Dead Code Removal
! Strength Reduction
! Common Subexpression Elimination
! Variable Renaming
! Loop Optimizations
Not every compiler does all of these, so it sometimes can be

worth doing these by hand.
Much of this discussion is from [2] and [5].

Supercomputing in Plain English: Stupid Compiler Tricks
Wednesday September 19 2007 20

Copy Propagation
x = y
z = 1 + x

x = y
z = 1 + y

Has data dependency

No data dependency

Compile

Before

After

Supercomputing in Plain English: Stupid Compiler Tricks
Wednesday September 19 2007 21

Constant Folding

add = 100
aug = 200
sum = add + aug

Notice that sum is actually the sum of two constants,
so the compiler can precalculate it, eliminating the
addition that otherwise would be performed at runtime.

sum = 300

Before After

Supercomputing in Plain English: Stupid Compiler Tricks
Wednesday September 19 2007 22

Dead Code Removal

var = 5
PRINT *, var
STOP
PRINT *, var * 2

Since the last statement never executes, the
compiler can eliminate it.

var = 5
PRINT *, var
STOP

Before After

Supercomputing in Plain English: Stupid Compiler Tricks
Wednesday September 19 2007 23

Strength Reduction

x = y ** 2.0
a = c / 2.0

x = y * y
a = c * 0.5

Before After

Raising one value to the power of another, or
dividing, is more expensive than multiplying. If the
compiler can tell that the power is a small integer, or
that the denominator is a constant, it’ll use
multiplication instead.
Note: In Fortran, “y ** 2.0” means “y to the
power 2.”

Supercomputing in Plain English: Stupid Compiler Tricks
Wednesday September 19 2007 24

Common Subexpression Elimination

d = c * (a / b)
e = (a / b) * 2.0

adivb = a / b
d = c * adivb
e = adivb * 2.0

Before After

The subexpression (a / b) occurs in both
assignment statements, so there’s no point in
calculating it twice.
This is typically only worth doing if the common
subexpression is expensive to calculate.

Supercomputing in Plain English: Stupid Compiler Tricks
Wednesday September 19 2007 25

Variable Renaming

x = y * z
q = r + x * 2
x = a + b

x0 = y * z
q = r + x0 * 2
x = a + b

Before After

The original code has an output dependency, while
the new code doesn’t – but the final value of x is
still correct.

Supercomputing in Plain English: Stupid Compiler Tricks
Wednesday September 19 2007 26

Loop Optimizations
! Hoisting Loop Invariant Code
! Unswitching
! Iteration Peeling
! Index Set Splitting
! Loop Interchange
! Unrolling
! Loop Fusion
! Loop Fission
Not every compiler does all of these, so it sometimes can be

worth doing some of these by hand.
Much of this discussion is from [3] and [5].

Supercomputing in Plain English: Stupid Compiler Tricks
Wednesday September 19 2007 27

Hoisting Loop Invariant Code
DO i = 1, n
 a(i) = b(i) + c * d
 e = g(n)
END DO

Before

temp = c * d
DO i = 1, n
 a(i) = b(i) + temp
END DO
e = g(n)

After

Code that
doesn’t
change inside
the loop is
called loop
invariant. It
doesn’t need
to be
calculated
over and over.

Supercomputing in Plain English: Stupid Compiler Tricks
Wednesday September 19 2007 28

Unswitching
DO i = 1, n
 DO j = 2, n
 IF (t(i) > 0) THEN
 a(i,j) = a(i,j) * t(i) + b(j)
 ELSE
 a(i,j) = 0.0
 END IF
 END DO
END DO
DO i = 1, n
 IF (t(i) > 0) THEN
 DO j = 2, n
 a(i,j) = a(i,j) * t(i) + b(j)
 END DO
 ELSE
 DO j = 2, n
 a(i,j) = 0.0
 END DO
 END IF
END DO

Before

After

The condition is
j-independent.

So, it can migrate
outside the j loop.

Supercomputing in Plain English: Stupid Compiler Tricks
Wednesday September 19 2007 29

Iteration Peeling
DO i = 1, n
 IF ((i == 1) .OR. (i == n)) THEN
 x(i) = y(i)
 ELSE
 x(i) = y(i + 1) + y(i – 1)
 END IF
END DO

x(1) = y(1)
DO i = 2, n - 1
 x(i) = y(i + 1) + y(i – 1)
END DO
x(n) = y(n)

Before

After

We can eliminate the IF by peeling the weird iterations.

Supercomputing in Plain English: Stupid Compiler Tricks
Wednesday September 19 2007 30

Index Set Splitting
DO i = 1, n
 a(i) = b(i) + c(i)
 IF (i > 10) THEN
 d(i) = a(i) + b(i – 10)
 END IF
END DO

DO i = 1, 10
 a(i) = b(i) + c(i)
END DO
DO i = 11, n
 a(i) = b(i) + c(i)
 d(i) = a(i) + b(i – 10)
END DO

Before

After

Note that this is a generalization of peeling.

Supercomputing in Plain English: Stupid Compiler Tricks
Wednesday September 19 2007 31

Loop Interchange

DO i = 1, ni
 DO j = 1, nj
 a(i,j) = b(i,j)
 END DO
END DO

DO j = 1, nj
 DO i = 1, ni
 a(i,j) = b(i,j)
 END DO
END DO

Array elements a(i,j) and a(i+1,j) are near
each other in memory, while a(i,j+1) may be
far, so it makes sense to make the i loop be the
inner loop. (This is reversed in C, C++ and Java.)

Before After

Supercomputing in Plain English: Stupid Compiler Tricks
Wednesday September 19 2007 32

Unrolling
DO i = 1, n
 a(i) = a(i)+b(i)
END DO

DO i = 1, n, 4
 a(i) = a(i) +b(i)
 a(i+1) = a(i+1)+b(i+1)
 a(i+2) = a(i+2)+b(i+2)
 a(i+3) = a(i+3)+b(i+3)
END DO

Before

After

You generally shouldn’t unroll by hand.

Supercomputing in Plain English: Stupid Compiler Tricks
Wednesday September 19 2007 33

Why Do Compilers Unroll?
We saw last time that a loop with a lot of operations gets

better performance (up to some point), especially if there
are lots of arithmetic operations but few main memory
loads and stores.

Unrolling creates multiple operations that typically load from
the same, or adjacent, cache lines.

So, an unrolled loop has more operations without increasing
the memory accesses by much.

Also, unrolling decreases the number of comparisons on the
loop counter variable, and the number of branches to the
top of the loop.

Supercomputing in Plain English: Stupid Compiler Tricks
Wednesday September 19 2007 34

Loop Fusion
DO i = 1, n
 a(i) = b(i) + 1
END DO
DO i = 1, n
 c(i) = a(i) / 2
END DO
DO i = 1, n
 d(i) = 1 / c(i)
END DO

DO i = 1, n
 a(i) = b(i) + 1
 c(i) = a(i) / 2
 d(i) = 1 / c(i)
END DO

As with unrolling, this has fewer branches. It also has fewer
total memory references.

Before

After

Supercomputing in Plain English: Stupid Compiler Tricks
Wednesday September 19 2007 35

Loop Fission
DO i = 1, n
 a(i) = b(i) + 1
 c(i) = a(i) / 2
 d(i) = 1 / c(i)
END DO !! i = 1, n

DO i = 1, n
 a(i) = b(i) + 1
END DO !! i = 1, n
DO i = 1, n
 c(i) = a(i) / 2
END DO !! i = 1, n
DO i = 1, n
 d(i) = 1 / c(i)
END DO !! i = 1, n

Fission reduces the cache footprint and the number of
operations per iteration.

Before

After

Supercomputing in Plain English: Stupid Compiler Tricks
Wednesday September 19 2007 36

To Fuse or to Fizz?
The question of when to perform fusion versus when to

perform fission, like many many optimization questions, is
highly dependent on the application, the platform and a lot
of other issues that get very, very complicated.

Compilers don’t always make the right choices.
That’s why it’s important to examine the actual behavior of the

executable.

Supercomputing in Plain English: Stupid Compiler Tricks
Wednesday September 19 2007 37

Inlining

DO i = 1, n
 a(i) = func(i)
END DO
…
REAL FUNCTION func (x)
 … func = x * 3
END FUNCTION func

DO i = 1, n
 a(i) = i * 3
END DO

Before After

When a function or subroutine is inlined, its contents
are transferred directly into the calling routine,
eliminating the overhead of making the call.

Supercomputing in Plain English: Stupid Compiler Tricks
Wednesday September 19 2007 38

To Learn More Supercomputing
http://www.oscer.ou.edu/education.php

http://symposium2007.oscer.ou.edu/

http://www.oscer.ou.edu/education.php
http://www.oscer.ou.edu/education.php
http://symposium2007.oscer.ou.edu/
http://symposium2007.oscer.ou.edu/

Supercomputing in Plain English: Stupid Compiler Tricks
Wednesday September 19 2007 39

References
[1] Steve Behling et al, The POWER4 Processor Introduction and Tuning Guide, IBM, 2001.
[2] Intel® 64 and IA-32 Architectures Optimization Reference Manual, Order Number: 248966-015
May 2007
http://www.intel.com/design/processor/manuals/248966.pdf
[3] Kevin Dowd and Charles Severance, High Performance Computing,
 2nd ed. O’Reilly, 1998.
[4] Code courtesy of Dan Weber, 2001.

http://www.intel.com/design/processor/manuals/248966.pdf
http://www.intel.com/design/processor/manuals/248966.pdf

