
Fortran Primer

David Newman
(from slides by Tom Logan)

Tuesday, September 15, 15

Resources

• Fortran 90 for Engineers and Scientists, Larry Nyhoff and
Sanford Leestma, Prentice-Hall, 1997

• Fortran 90/95 Explained, Metcalf & Reid, Oxford Univ
Press, 1999

• http://www.fortran.com/fortran/tutorials.html
– List of Fortran Tutorials
– The Manchester Computer Centre materials are a nice set of notes

but unfortunately in PostScript format
• http://library.lanl.gov/numerical/bookfpdf.html (Fortran77)
• http://library.lanl.gov/numerical/bookf90pdf.html

– Both of these books have many examples and useful routines, use
good coding style, & are downloadable

Tuesday, September 15, 15

http://www.fortran.com/fortran/tutorials.html
http://www.fortran.com/fortran/tutorials.html
http://library.lanl.gov/numerical/bookfpdf.html
http://library.lanl.gov/numerical/bookfpdf.html
http://library.lanl.gov/numerical/bookf90pdf.html
http://library.lanl.gov/numerical/bookf90pdf.html

Source Form

• Max. line length
– Fortran90: 132 chars (often more)

• Case insensitive

• Variable names (usual rules)
– Fortran90: Max length of 31 characters (more in Fortran03)
– Convention: lower case. Only keywords in upper case

• Comment
– Fortran77 & fixed format F90: C or * in first char position of line
– Fortran90: ! to end of line. Bang, !, generally works anywhere

Tuesday, September 15, 15

Source Form (cont.)

• Long line continuation:
– Fortran90: Ampersand at end of line and

optionally at beginning of next

• Semicolon ends statement
– Usually a poor practice to use them

• Statement labels
– Fortran90: like C and other names

Tuesday, September 15, 15

Program Structure

PROGRAM <name>
 ! name should be duplicated on end statement
IMPLICIT NONE ! Don’t implicitly declare variables
 ! declarations follow and must precede use
 ! By convention and history, declarations at beginning

CONTAINS
 ! Internal subroutines and functions follow

END PROGRAM <name> !PROGRAM, names are optional; Use them

Tuesday, September 15, 15

Simple Fortran90 Code
PROGRAM main

	 IMPLICIT NONE

	 REAL :: a=6.0, b=30.34, c=98.98

	 REAL :: mainsum

	 mainsum = add()

CONTAINS

	 FUNCTION add()
	
	 	 REAL :: add ! a,b,c defined in 'main'

	 	 add = a + b + c

	 END FUNCTION add

END PROGRAM main

Tuesday, September 15, 15

Primitive Declaration Types

	 IMPLICIT NONE ! always use

	 INTEGER :: i, j = 2
 	 ! do not forget the double colon
 REAL :: a, b, c = 1.2
 LOGICAL, PARAMETER :: debug = .true.
	 	! Parameter indicates a constant
 CHARACTER(20) :: name = "John"

Tuesday, September 15, 15

Assignment Statement

• variable = expression

 i = 3**2		 ! Double asterisk == exponentiation
 j = MOD(15, 2)

 a = 'Quotes delineate strings'
 b = "You can also use double quotes.”

Tuesday, September 15, 15

Operators and Their Priority

–Same as any normal language
• When in doubt use parens
• Don’t study the rules
• General normal algebra rules

•(please excuse my dear aunt sally)

Tuesday, September 15, 15

Some Intrinsic Functions

REALREAL LOG(x)

REALREAL ex EXP(x)

REALREAL ArcTan of x, y triangle ATAN(x, y)

REALREAL Trig functions of x
(radians for angles)

SIN(x),
COS(x), …

REALREALs

INTEGERINTEGERs Maximum of x, y, … MAX(x, y, …)

REALREAL

INTEGERINTEGER Absolute value of x ABS(x)

RETURN
TYPEARG TYPE DESCRIPTION FUNCTION

Tuesday, September 15, 15

Conversion Functions
FUNCTION DESCRIPTION ARG TYPE

RETURN
TYPE

INT(x) Integer part of x REAL INTEGER

NINT(x) Nearest integer to x REAL INTEGER

FLOOR(x) Greatest integer < or =
to x

REAL INTEGER

FRACTION(x) Fractional part of x REAL INTEGER

REAL(x) Converts x to REAL INTEGER REAL

MAX(x1,.., xn) Max of x1,.. xn INTEGER INTEGER

 REAL REAL

MIN(x1,.., xn) Min of x1,.. xn INTEGER INTEGER

 REAL REAL

MOD(x,y) x - INT(x/y) * y INTEGER INTEGER

Tuesday, September 15, 15

Input/Output
• PRINT *, 'hi’

– Shortcut for WRITE(*,*) 'hi'

• WRITE(*,*) x, y
• READ(*,*) a, b, c 	 	 ! asterisks for default values

– First asterisk says use default unit numbers. Usually
• 5 = stdin
• 6 = stdout
• System unit names often for unit 24 often like ftn24, FU24, …

– Second asterisk says use default formatting
• READ(integer_unit_number, format-format_line)

– Fortran “unit number” functions like a file descriptor in C
– Formats are powerful and complex like they are in C

Tuesday, September 15, 15

Input/Output

• Full treatment of I/O is not possible
here, but
– Binary (fast but machine dependent) OR text files

• netCDF (from NCAR) is a blend of the two
– Sequential and direct access
– On-the-fly conversions between binary formats
– Setting record lengths, block sizes, etc.
– Special instructions for asynchronous I/O

Tuesday, September 15, 15

Logical Operators

Left-to-right.EQV. .NEQV.

Left-to-right.OR.

Left-to-right.AND.

Right-to-left.NOT.Logical

.LT., .LE., .GT.,
.GE., .EQ., .NE.

(old style)

<, <=, >, >=, ==, /=Relational

ASSOCIATIVITYOPERATORTYPE

Tuesday, September 15, 15

IF Statements

• Single line form
IF(<logical-expr>)<statement>

• Multiple statement form
IF (<logical-expr>) THEN
 <statements>
END IF

• If-else form
IF (<logical-expr>) THEN
 <statements>
ELSE
 <statements>
END IF

• If-else-if form
IF (<logical-expression>) THEN
 <statements
ELSEIF(<logical-expression>)THEN
 <statements>
ELSEIF(<logical-expression>)THEN
 <statements>
ELSE
 <statements>
END IF

Tuesday, September 15, 15

Selection
• SELECT CASE Statement
SELECT CASE (<selector>)
 CASE (<label-list-1>)
 <statements-1> ! Note that no overlap is
 CASE (<label-list-2>) ! allowed so only one case is
 <statements-2> ! executed
 CASE (<label-list-3>)
 <statements-3>

 CASE (<label-list-n>)
 <statements-n>
 CASE DEFAULT
 <statements>
END SELECT

Tuesday, September 15, 15

Case Statement Select Values

• Value Range

Syntax Meaning
:x all values less than or equal to x
x: all values greater than or equal to x
x:y the inclusive range from x to y
x the value x

Tuesday, September 15, 15

SELECT Example

SELECT CASE(index)
 CASE(:0)
 print *, "index is equal or less than zero"
 CASE(1: maxIndex/2-1)
 print *, "index is below mean"
 CASE(int(maxIndex/2))
 print *, "index is at mean"
 CASE(maxIndex/2+1:maxIndex)
 print *, "index is above mean"
 CASE(maxIndex+1:)
 print *, "index is greater than the max"
END SELECT

Tuesday, September 15, 15

Iteration or Looping
• General DO-Loop w/ EXIT
DO
 Statements-1
 IF (Logical-Expr) EXIT
 Statements-2
ENDDO

• Nested DO-loop:
Outer: DO
 IF (expressn-1) EXIT Outer !opt
 Statements-1
 Inner: DO
 IF (expr-2) EXIT Outer !req'd
 Statements-2
 ENDDO Inner
 Statements-3
ENDDO Outer

• Counting Loop
DO var=init-val,final-val,step-size
 Statements
ENDDO

• Default step-size is 1
DO var=initial-value, final-value
 Statements
ENDDO

• CYCLE: start loop over (like
continue in C)

Tuesday, September 15, 15

Iteration Examples

• Classic F77 example

INTEGER count, n
REAL average, input, sum

sum = 0
DO count = 1, n
	 READ *, input
	 sum = sum + input
END DO
average = sum / n	
	 ! Implicit convrs'n n to real

• Fortran90 example

Integer :: i, n, factorial

READ (*,*) n
factorial = 1
DO i = 1, n
	 factorial = factorial * I
ENDDO

Tuesday, September 15, 15

Subprograms

• Subroutines
– Modify arguments or

COMMON (global)
values

– Not typed and not
declared

– Arguments are passed
by reference

– Invoked by CALL
statement

• Functions
– Conceptually return a

value, don’t modify
arguments; but this is not
enforced!

– Typed by return value; must
be declared

– Arguments are passed by
reference

– Assign return value to
function name or use
RESULT clause

– Invoked by name reference

Tuesday, September 15, 15

Subroutine Example

SUBROUTINE swap(a,b)
 IMPLICIT NONE	 	 	 ! Good habit
 INTEGER, INTENT(INOUT):: a, b	! INTENT is optional
 INTEGER:: tmp	 	 	 ! local
 tmp = a
 a = b
 b = tmp
END SUBROUTINE swap

! Call with:
CALL swap(x,y)	 	 	 ! Call by reference!

Tuesday, September 15, 15

Function Example
REAL FUNCTION fact(k)
 IMPLICIT NONE
 INTEGER, INTENT (IN) :: k
 REAL :: f
 INTEGER :: i

 IF (k .le. 1) THEN
 fact = 1.0
 ELSE
 f = 1.0
 DO i = 1, k
 f = f * i
 END DO
 fact = f
 END IF
END FUNCTION fact

Tuesday, September 15, 15

More Fun With Functions
• Variables declared inside a subprogram

– Have local scope
– Are “automatic” (stored on the subprogram stack)

• A local variable becomes “static” if
– It is initialized in the declaration

INTEGER :: keeper = 0
REAL :: x(123, 0: 456)
DATA x(1, 13) / 0. /

– It has the SAVE attribute
INTEGER, SAVE :: keeper2

Tuesday, September 15, 15

1-D Arrays
• Syntax

– <type>, DIMENSION (extent) :: name-1, name-2, ...
– <type>, DIMENSION (lower : upper) :: <list-array-names>

• Array operands and operators
– Initialization

a = (/ 1, 2, 3 /)
– Array expressions and assignments

a = b + c ! These operations are done
a = b * 3.14 ! element-wise
a = b * c

Tuesday, September 15, 15

Array Example
REAL FUNCTION fact(k)
 IMPLICIT NONE
 INTEGER, INTENT (IN) :: k
 INTEGER, PARAMETER :: N = 8
 REAL :: f	 	 ! Don’t use “fact” on RHS!
 REAL :: precmp(0:N)=(/1.0,1.0,2.0,6.0,24.0,120.0,720.0,5040.0,40320.0/)
 IF (k .le. N) THEN
 fact = precmp(k)
 RETURN
 ENDIF
 f = precmp(N)
 DO i = N+1, k
 f = f * i
 END DO
 fact = f
END FUNCTION fact

Tuesday, September 15, 15

Some 1-D Array Functions

Maximum value in array AMAXVAL(A)

Product of the elements in APRODUCT(A)

Sum of the elements in ASUM(A)

Number of elements in ASIZE(A)

One Dimensional array of one
element containing the location of
the smallest element

MINLOC(A)

One Dimensional array of one
element containing the location of
the largest element

MAXLOC(A)

Minimum value in array AMINVAL(A)

RETURNSFUNCTION

Tuesday, September 15, 15

Dynamic Array Allocation

• Syntax
– <type>, DIMENSION(:), ALLOCATABLE :: <list-of-array-names>

– ALLOCATE (list, STAT = <status-variable>)

– DEALLOCATE (list, STAT = <status-variable>)

Tuesday, September 15, 15

Dynamic Array Allocation
• Example
PROGRAM main
 IMPLICIT NONE
 INTEGER, DIMENSION(:), ALLOCATABLE :: A
 INTEGER :: aStatus, N
 WRITE(*, '(1X, A)', ADVANCE = "NO") "Enter array size: "
 READ *, N	 	 	 ! Try 1 billion on your PC!
 ALLOCATE(A(N), STAT = aStatus)
 IF (aStatus /= 0) STOP "*** Not enough memory ***"
 PRINT*, ‘Array allocated with size ‘, N

 DEALLOCATE(A)
 PRINT*, ‘Array deallocated…’

Tuesday, September 15, 15

Multidimensional Arrays

• Syntax
– type, DIMENSION (dim1,dim2,…) :: <list-array-names>
 ! Up to 7 dimensions.
 Superstrings not allowed.
– type, DIMENSION (:, :, …), ALLOCATABLE :: <list-array-names>
 ! Some implementations may allow more. CAF does.
– ALLOCATE(array-name(lower1: upper1, lower2: upper2, …) ,

STAT = status)

• Examples
– INTEGER, DIMENSION (100,200) :: a
– INTEGER, DIMENSION(:,:), ALLOCATABLE :: a

Tuesday, September 15, 15

Multidimensional Arrays
• Column-major ordering

– In Fortran, it is in column-major order: the first
subscript varies most rapidly

– NB: C is row-major order!

– Yes, there are situations in which we care!
• Varying the order of loops affects performance
• Interfacing Fortran and C programs

Tuesday, September 15, 15

Multi-D Array Functions

Array of one less dimension containing the
maximum values in array A along dimension D. If D
is omitted, maximum of the entire array is returned.

MAXVAL (A,D)

Number of elements in ASIZE (A)

Like MAXLOC() but for smallest element

SHAPE (A)

One Dimensional array of one element containing
the location of the largest elementMAXLOC (A)

Like MAXVAL() but returns minimaMINVAL (A,D)

RETURNSFUNCTION

A 1-D array of the extents of (A)

MINLOC (A)

Tuesday, September 15, 15

Multi-D Array Fns (cont.)

Matrix product of A and B (provided result is
defined)MATMUL(A,B)

Array of one less dimension containing the products
of the elements of A along dimension D. If D is
omitted, the product of the elements of the entire
array is returned.

PRODUCT(A)

Array of one less dimension containing the sums of
the elements of A along dimension D. If D is
omitted, the sum of the elements of the entire array
is returned.

SUM(A,D)

RETURNSFUNCTION

Tuesday, September 15, 15

Modules (not in Fortran77)

• Modules - used to package
– Type declarations
– Subprograms
– Data type definitions
– Global data

• Forms a library that can be used in
other program units

• Creates global variables (and constants)

Tuesday, September 15, 15

Module Syntax

• Module definition
MODULE module-name
 IMPLICIT NONE
 <specification part>

 PUBLIC :: Name-1, Name-2, ... , Name-n
 PRIVATE :: Name-1, Name-2, ... , Name-m

CONTAINS
 internal-functions
END MODULE

• Module use - use the USE to use
USE module-name

Tuesday, September 15, 15

Implicit Typing
• If you don't use IMPLICIT

NONE or put the "implicit
none flag" on the compilation
line variables are
– Integer if first letter is i, j, k, l, m, or n
– Real for all other initial letters

• Can be changed by IMPLICIT:
– IMPLICIT REAL k, COMPLEX c, &

LOGICAL b, l, t-w

Tuesday, September 15, 15

Hello World

PROGRAM main

 IMPLICIT NONE
 PRINT *, "Hello World"
END PROGRAM main

PROGRAM main

 IMPLICIT NONE
 CHARACTER (len =33) :: name
 READ *, name

 PRINT *, "Hello, ", name
END PROGRAM main

Tuesday, September 15, 15

Obsolescent & Redundant
Features You May See

• Arithmetic IF
• CONTINUE statement/shared DO loop termination
• GO TO
• Computed GO TO
• COMMON blocks
• EQUIVALENCE
• "Fixed Form" Source

– Cols 1 to 5 for statement labels that must be integers
– Col 6 for continuation

Tuesday, September 15, 15

Backup and Redundant Slides

• Mostly about old stuff that you
will need to understand to read
others' programs.

• Remember: Programming is about
code re-use.

Tuesday, September 15, 15

Fortran77 Program Structure

	 PROGRAM <name>
C <name> is generally allowable
 	 IMPLICIT NONE
C Don’t implicitly declare variables
C declarations follow and must precede executable code
C
	 	 DO 100 I=1,15
	 	 ……
100 	CONTINUE

	 	 END

Tuesday, September 15, 15

Simple Fortran77 Code
PROGRAM main

 IMPLICIT NONE

	 REAL a=6.0, b=30.34, c=98.98, mainsum
 DATA a/6.0/, b/30.34/, c/98.98/

 add(b, c) = b + c

C note statement above is a BAD function defn.

C declarations above, executable below

 mainsum = add()

 END

Tuesday, September 15, 15

Declaration of Fortran77
Types

	 INTEGER i, j
 REAL a, b, c

 LOGICAL debug

 PARAMETER	 (debug = .TRUE.)
C Parameter indicates a constant
 CHARACTER(20) name

C 	 Before other declaratives always use:
 IMPLICIT NONE

Tuesday, September 15, 15

Major Differences with C

Issue C Fortran
End of statement ; <end of line> ;
Line length unlimited 132 chars
Identifier length unlimited 31 chars (soon 63)
Subprogram structures functions functions, subroutines
 declare recursion
Array storage row-major column-major
 indexing 0-based 1-based
Looping for, while do I = 1, 20
Subscripts [] () parens not brackets
Statement blocking { } <key words>

Tuesday, September 15, 15

More Differences with C

Tuesday, September 15, 15

Some Intrinsic Functions

REALREAL LOG(x)

REALREAL ex EXP(x)

REALREAL Tangent of x radians TAN(x)

REALREAL Cosine of x radians COS(x)

REALREAL Sine of x radians SIN(x)

REALREAL Square root of x SQRT(x)

REALREAL

INTEGERINTEGER Absolute value of x ABS(x)

RETURN
TYPEARG TYPE DESCRIPTION FUNCTION

Tuesday, September 15, 15

Obsolescent/Redundant Loops

• Fortran 77 DO loops

 DO 100 I=1, N
	 	 statements
100 CONTINUE

• Redundant WHILE loop

DO WHILE(logical-expr)
	 statements
END DO

• Equivalent to
DO
	 IF (logical_expr) EXIT
	 statements
END DO

Tuesday, September 15, 15

