
Shell Scripting

David Newman
(From slides by Tom Logan)
(from Slides from Kate Hedstrom & Don Bahls)

Tuesday, September 15, 15

Overview

• Variables
• Scripting Basics
• Bash Shell Scripts
• Other Scripting
• Advanced Command Line
• Appendix (C-Shell Scripts)

Tuesday, September 15, 15

Shells
• There are a number of different shells

available.
• Shell family tree.

– csh -> tcsh
– sh -> ksh -> bash

• This lecture focuses on bash
– user friendliness of tcsh
– scripting capabilities of ksh

• Most if not all syntax shown here works
with ksh as well.

Tuesday, September 15, 15

Bash
• bash is the bourne-again shell.
• Similar syntax to sh and ksh.

– Includes new features that are not in sh or older
versions of ksh

– Flexible syntax allow most expressions to be done
on a single line (if you want).

– Supports functions.

• Default shell on most Linux systems.
• Verbose mode (useful for debugging)

#!/bin/bash -v

Tuesday, September 15, 15

Command Line

• Consider the following:
 sort -n file > file.sorted &
• sort is a command in your $PATH
• “-n file” is passed to the sort

command as arguments
• > and & are special
• & puts the job in the background -

DON’T do this in batch scripts

Tuesday, September 15, 15

Environment Variables

• csh/tcsh:
 setenv PAGER more

• sh:
 PAGER=more
 export PAGER

• ksh:
 export PAGER=less

• Standard practice is to use
uppercase names

Tuesday, September 15, 15

Variables
• Bash (and other shells) allow

users to instantiate local or
environment variables.

• Environment variables are
accessible to child shells.
#local variable

num=20
#environment variable
export LD_LIBRARY_PATH=“/usr/local/bin”

Tuesday, September 15, 15

Environment Variables
• The environment variable PATH defines

a colon delimited list of directories
where the shell (and other processes)
should look for executables.

• At ARSC we use environment variables
to define storage areas:
e.g.
cd $ARCHIVE
ls $CENTER

Tuesday, September 15, 15

The $PATH
• Environment variable containing a list of

directories to search for commands
• Order is important - takes first one
• Some commands are built into the shell,

for instance echo is built into csh. There is
also a /usr/bin/echo for shells which don’t
have echo built in.

• Can give the full path of commands to get
a specific one: /usr/local/bin/patch or /usr/
bin/patch

• Putting “.” (current directory) in your path
is controversial - put it at the end if you do

Tuesday, September 15, 15

Setting the Environment

• We often want the same
environment variables to be set
every time we log in

• For sh/ksh, set in .profile
– Can reload it with “. .profile”

• For csh/tcsh, set in .cshrc
– Can reload it with “source .cshrc”

Tuesday, September 15, 15

More Environment Variables

• Some have standard names, such as
HOME, PATH, PRINTER, EDITOR

• Some programs are expecting
environment variables to be set, for
instance graphics programs:
NCARG_ROOT, GMTHOME, QTDIR,
MATLABPATH

• Programs can read the environment
through the getenv function call

Tuesday, September 15, 15

Shell Variables

• Can be lowercase (case sensitive):
 name=Harry
 echo $name

• Quote for embedded spaces:
 longname=‘Harry Smith’

• No spaces on either side of equals

Tuesday, September 15, 15

Scripting Basics

• Scripts
– Usually executable
 e.g.

 chmod 700 myscript

 but don’t necessarily need to be.
 ksh myscript

– Should have the shell on the first line.
e.g.
 #!/bin/ksh

Tuesday, September 15, 15

Basics (continued)

– Be aware that following may work
sometimes but are not portable! Don’t
write your scripts this way.

• not specify a shell at the beginning of an
executable script. (BAD!)

• spaces between the “#!” and the shell.
 #! /bin/sh (BAD?)
• Skipping the PATH to the script
•#!csh (BAD!)

Tuesday, September 15, 15

More on “#!”
• When you run a script

interactively the program (i.e.
shell) listed in the “#!” statement
is started as child process of your
login shell. It gets a copy of all of
the environment variables set for
the parent shell.

• aliases and functions are NOT
inherited from the parent shell!

Tuesday, September 15, 15

Integer Math

• There are a few different ways to do
math operations.

• var = $((expression))
e.g.
x=$(($y * 2 + 1))

• let var = (expression)
e.g.
let x=($y * 2 + 1)

Tuesday, September 15, 15

If Statements (sh/ksh)
• “if” has several flavors, including optional else

and elif parts:
 if [“$1” = south]
 then
 echo Going south
 elif [“$1” = north]
 then
 echo Going north
 else
 echo Going east-west
 fi

Tuesday, September 15, 15

More on “if”

• The example
 if [-d /usr]

• Can be written
 if test -d /usr

• test (or []) is testing the result of
something

• An executable will return an error code
and not need the test
 if hostname

Tuesday, September 15, 15

Logical Operators
&& logical and
|| logical or
-a logical and (only within [])
-o logical or (only within [])
! logical negation
&& only performs second operation if the

first succeeds (returns 0)
|| only performs the second operation if

the first operation failes (returns a non-
zero value).

Tuesday, September 15, 15

File Tests
• -d val val is a directory
• -e val val exists
• -f val val is a regular file (not a link or

directory)
• -r val val is readable by user
• -w val val is writeable by user
• -x val val is executable by user
• f1 -nt f2 f1 is newer than f2 *.
• f1 -ot f2 f1 is older than f2 *.

Tuesday, September 15, 15

File Tests
• Example - checking for writable file:

 if [-w myfile]
 then
 ls >> myfile
 fi

Tuesday, September 15, 15

Logic Examples

if [-d $f] && [-w $f]; then
...

if [-d $f -a -w $f]; then
...

if [-d $f -a \(-w $f -o -x $f \)]
then
...

Tuesday, September 15, 15

Other Operators

• -z val string is zero length
• strA = strB are strings the same
• strA != strB are strings different
• Arithmetic Operators

-eq (equal), -ne (not equal)
-lt (less than), -gt (greater than)

Tuesday, September 15, 15

Warning about [...]

• If you have a variable that might
not be set, put it in double quotes:

if [-z “$f”]; then

 ...
fi

• or use “[[“ and “]]”
if [[-z $f]]; then

Tuesday, September 15, 15

Example of bad
behavior from [

show that f is not defined.

mg56 % echo $f

this is bad! The directory “$f” doesn’t exist.

mg56 % if [-d $f]; then echo Hello; fi

Hello

this is OK.

mg56 % if [-d "$f"]; then echo Hello; fi

so is this.

mg56 % if [[-d $f]]; then echo Hello; fi

if “$f” is defined we don’t have this problem:

mg56 % f=.

mg56 % if [[-d $f]]; then echo Hello; fi

Hello

mg56 % if [-d "$f"]; then echo Hello; fi

Hello

Tuesday, September 15, 15

Loops

• sh/ksh
 for num in 42 66 210 13
 do
 echo $num
 done

• csh/tcsh
 foreach lib (lib*)
 nm $lib | grep rand
 echo $lib done
 end

Tuesday, September 15, 15

for

for name in list; do
 #do something
done

for f in /usr/bin/*; do
 if [! -L $f -o ! -d $f]; then
 echo $f
 fi
done

Tuesday, September 15, 15

while

while [logical-expression];
do

 #do something
done

Tuesday, September 15, 15

select

• Simple command line parsing code
blurb.
case $arg in
 -a)
 #do something ;;
 -b)
 #do something else ;;
 *)
 #match everything else ;;
esac

Tuesday, September 15, 15

Command Line Arguments

• The variable $0 has the name of
the executable being run. $1-$9
have the 1st thru 9th command
line arguments.

• $# has the number of args
• $* can access all args (beyond 10)
• shift allows you to move an

argument forward in the list.
Tuesday, September 15, 15

getopts

• If you want to have a script accept
command line arguments (e.g. “-f”), use
getopts.
while getopts “fg:” opt; do
 case $opt in

 f) echo "-f is $OPTARG" ;;

 g) echo "-g is $OPTARG" ;;

 \?) echo "Usage: ..."
 exit 1

 ;;

 esac
done

this allows “cmd -f -g arg” or “cmd -fg arg”

shift $(($OPTIND - 1))

Tuesday, September 15, 15

getopts continued

• The string “fg:” tells the script to
look for “-f” and/or “-g val”

• The “:” tells getopts that the
preceding value must have an
option.

• OPTARG and OPTIND are set by
getopts

Tuesday, September 15, 15

Functions and Aliases

• Simplify repeated tasks.
• However, aliases and functions are not

inherited by child shells.

• You can source a file from within a
script to get the functions and aliases
from that file

• e.g.
. ~/.mystuff

• “. “ is source in bash and ksh
Tuesday, September 15, 15

Example Functions and
Aliases

alias ll=“ls -l”
function foo
{
 for l in $*; do echo $l; done
}

• You can ignore an alias, function or
built-in command by escaping the
name.

• e.g.
% \ls

Tuesday, September 15, 15

Error Handling

• As previously mentioned normal
convention is that programs exit with a
non-zero value if they exit in error.

• We can use this to our advantage:
• e.g.

mv myfile $ARCHIVE || exit 1

• The exit value of the last command is
stored in the variable “$?”.

• We can give a more meaningful error
message!

Tuesday, September 15, 15

More Error Handling

• A function can improve this alot.
function printError

{

$1 (optional) is an error message to print.

exitval=$?

if [$exitval -ne 0]; then

 if [! -z “$1”]; then

 echo “Error: $1”

 fi

 exit $exitval

fi

}

mv myfile $ARCHIVE || printError “mv myfile failed”

Tuesday, September 15, 15

Quoting

• The shell interprets these characters in a special
way:

 # * ? \ [] {} () < > “ ‘ ` | ^ & ; $

• Double quotes protect some, but allow $variable
substitution:
 echo $PATH
 echo “$PATH”

 echo ‘$PATH’

 echo \$PATH

Tuesday, September 15, 15

Quoting Continued

• Be aware of quoting.
– Variables are not expanded when within single

quotes ‘’, but are in double quotes “”.
% echo "$PATH"

/usr/local/bin:/bin:/usr/bin:/sbin:/usr/sbin:/usr/X11R6/bin

% echo '$PATH'

$PATH

– Variables can also be escaped with “\”
% echo ”\$PATH"

$PATH

Tuesday, September 15, 15

Subshells

• Back ticks start a subshell and
return the value

% ls -l `which cat`

-r-xr-xr-x 1 root wheel 14380 Mar 20 2005 /bin/cat

• The $(...) operation works the
same.

% ls -l $(which cat)

-r-xr-xr-x 1 root wheel 14380 Mar 20 2005 /bin/cat

Tuesday, September 15, 15

Back Quotes

• Can save the results of commands
into a variable:
 pwd=`pwd`
 lines=`cat /etc/passwd | wc -l`
 echo $pwd
 echo $lines

Tuesday, September 15, 15

Shell Special Characters

• * matches anything
• ? matches on single character
• [a-z] matches a range of

characters
• [^a-z]negation of the previous.
• {str1,str2} matches str1 or str2

Tuesday, September 15, 15

Pipes and Redirection

• Pipes allow you to send the “stdout”
from one command to the “stdin” of
another command.

 ls | more
• Redirection allows you to send output

to a file or input from a file.
look for the work fred in the file friends
grep -i fred < friends
redirect the output of ls to a file called ls.out
ls > ls.out
concatenate the output of ls to the file ls.out
ls >> ls.out

Tuesday, September 15, 15

Tieing Output /
Redirecting Stderr

• Stdout can tied to stderr.
echo “Error: “ 1>&2

• Stderr can tied to stdout.
somecmd 2>&1

• Redirecting Stderr.
find . -name *.out 2> /dev/null

Tuesday, September 15, 15

Other Scripting Languages

• If you end up needing to do more
complicated operations. Consider
a more powerful scripting
language.
– python
– perl
– tcl/tk
– ruby

Tuesday, September 15, 15

Advantages

• Languages like python have a large
number of modules which come with
the package.

• Python also have:
– Good integration with C/C++ and Fortran
– Scientific Packages (numpy / scipy) give matlab

like functionality.
– Regular expressions for parsing files.

Tuesday, September 15, 15

References

• Linux in a Nutshell - O’Reilly (bash
and tcsh)

• UNIX in a Nutshell - O’Reilly (csh,
sh and ksh)

• Learning the bash shell - O’Reilly

Tuesday, September 15, 15

Appendix

Tuesday, September 15, 15

C-Shell

• based on C programming language
syntax.

• tcsh has a bit more functionality if
you want it.

Tuesday, September 15, 15

Setting variables

• Local variables (not available to child
processes)
– set v=0

• Environment variables available to child
processes
– setenv NCARG_ROOT /usr/local/pkg/ncl/ncl-4.2.0-a33/

• Arrays (Warning to C programmers first
element of the array is 1 not 0!)
– set arr=(“a” ”b” “c”)

– echo ${arr[1]}

– #echos a

Tuesday, September 15, 15

Arithmetic Operations

set value of v to 0

set v=0

set v to v + 1 (be careful about spacing!)

@ v=($v + 1)

#x x x here’s where the spaces need to be.

value of v is 1

@ v=($v * 2)

#x x x here’s where the spaces need to be.

value of v is 2

Tuesday, September 15, 15

If

if (! -e $ARCHIVE/myresults) then

 mkdir $ARCHIVE/myresults

endif

if (-f ~/.myaliases) then

 source ~/.myaliases

else

 echo “Warning ~/.myaliases not found”

endif

Tuesday, September 15, 15

Tests

• -d foo (is foo is a directory?)
• -e foo (does foo exist?)
• -f foo (is foo a regular file?)
• -l foo (is foo a symbolic link?)
• -o foo (is foo owned me?)

• tcsh has some additional tests which could be
useful (groups -G foo, access time -A foo,
permissions -P foo and more!)

Tuesday, September 15, 15

Logical Operators

• && logical and, performs second
operation only if the first
succeeds.

mv foo $ARCHIVE && ls -la $ARCHIVE/foo

• || logical or, performs the second
operation only if the first fails.

mv foo $ARCHIVE || echo $status

Tuesday, September 15, 15

Error Checking

• Programs exiting in error return a
non-zero value.

• Programs that complete
successfully return 0.

• This lets us test for errors.
• The variable $status (csh/tcsh)

has the value of the last command
that was run.

Tuesday, September 15, 15

Another look at Error
Checking

• You can use alias to improve error
checking:

#pErr prints a message if an error occurs.

alias pErr ‘set ev=$status && echo Error: “ $ev && exit $ev’

mv foo $ARCHIVE || pErr

Tuesday, September 15, 15

Seeing if a variable is set

if ($?ARCHIVE) then

 echo \$ARCHIVE is not set!

endif

Here \$ ensures the “$” is not used
to dereference ARCHIVE.

You could also use ‘$ARCHIVE ...’

Tuesday, September 15, 15

foreach

Foreach iterates on an array.
foreach f (/usr/bin/*)

 if (-f $f && ! -l $f) then

 echo $f

 endif

end

set arr=(a b c)

foreach v ($arr)

 echo $v

end

Tuesday, September 15, 15

while

#handle commandline arguments (default is 10 with array

#syntax)

while ($#argv)

 if (-d ${argv[1]}) then

 echo ${argv[1]} is a directory!

 endif

 shift

end

simulate a regular C for loop.

set ii=0

while ($ii < 10)

 echo $ii

 @ ii=($ii + 1)

end

Tuesday, September 15, 15

String Operators

• C-Shell has a group of operators that can act
on strings.

• E.g. get the root and extension of a file.
% set f="/u1/uaf/username/bath.nc"
% echo $f

/u1/uaf/username/bath.nc
% echo $f:r

/u1/uaf/username/bath

% echo $f:e
nc

• True csh this does not work for environment
variables (tcsh does).

Tuesday, September 15, 15

String Operators

• Other operators
• :r (root, part of string before last dot)
• :e (extension, part of string after last

dot)
• :h (part of the string before last “/”)
• :t (part of string after last “/”)
• :gr, :ge, :gh, :gt (perform operations

above on an array of files g=global)

Tuesday, September 15, 15

